首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Significant enhancement in the electrocatalytic activity of Pt particles toward oxygen reduction reaction (ORR) has been achieved by depositing them on a single wall carbon nanotubes (SWCNT) support. Compared to a commercial Pt/carbon black catalyst, Pt/SWCNT films cast on a rotating disk electrode exhibit a lower onset potential and a higher electron-transfer rate constant for oxygen reduction. Improved stability of the SWCNT support is also confirmed from the minimal change in the oxygen reduction current during repeated cycling over a period of 36 h. These studies open up ways to utilize SWCNT/Pt electrocatalyst as a cathode in the proton-exchange-membrane-based hydrogen and methanol fuel cells.  相似文献   

2.
In this paper, the adsorption of CO onto Pd-decorated (5,5) single-walled carbon nanotube (Pd/SWCNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd/SWCNT-V) has been investigated using ab initio studies. The larger binding energies and charges transfer show that the adsorption of CO onto Pd/SWCNT is more stable than that of CO onto Pd/SWCNT-V. The Pd/SWCNT can be utilized as good sensors for CO molecules due to strong binding energy and large electron charge transfer between the Pd/SWCNT and this molecule. Furthermore, the topological properties of the electron density distributions for intramolecular interactions have been analyzed in terms of the Bader theory of atoms in molecules. Finally, the natural population analysis method has been used to evaluate the Pd–C and Pd/CO interactions.  相似文献   

3.
The formation of a massive quantity of single-wall carbon nanotube (SWCNT) superbundles has been introduced through sonicating SWCNTs in tetramethylene sulfone/chloroform solution in which nitronium hexafluoroantimonate (NHFA) is dissolved. Most SWCNT bundles with the NHFA treatment are enlarged by about 10 times compared with those of the pristine sample. It is proposed that the formation of SWCNTs can occur in solution by formation of an SWCNT-intercalant charge complex. The specific surface area of the superbundle is almost doubled, while its micropore surface area is amplified by about 7 times. This development of microporosity results from the enhanced interstitial sites in the SWCNT superbundles.  相似文献   

4.
Covalent addition reactions turned out to be one of the most important functionalization techniques for a structural alteration of single walled carbon nanotube (SWCNT) scaffolds. During the last years, several reaction sequences based on an electrophilic interception of intermediately generated SWCNT(n-) carbanions, obtained via Birch reduction or by a nucleophilic addition of organometallic species, have been developed. Nevertheless, the scope and the variety of potential electrophiles is limited due to the harsh reaction conditions requested for a covalent attachment of the functional entities onto the SWCNT framework. Herein, we present a significant modification of the reductive alkylation/arylation sequence, the so-called Billups reaction, which extends the portfolio of electrophiles for covalent sidewall functionalization to carbonyl compounds--ketones, esters, and even carboxylic acid chlorides. Moreover, these carbonyl-based electrophiles can also be used as secondary functionalization reagents for anionic SWCNT intermediates, derived from a primary nucleophilic addition step. This directly leads to the generation of mixed functional SWCNT architectures, equipped with hydroxyl or carbonyl anchor groups, suitable for ongoing derivatization reactions. A correlated absorption and emission spectroscopic study elucidates the influence of the covalent sidewall functionalization degree onto the excitonic transition features of carbon nanotubes. The characterization of the different SWCNT adducts has been carried out by means of Raman, UV-vis/nIR, and fluorescence spectroscopy as well as by thermogravimetric analysis combined with mass spectrometry and X-ray photoelectron spectroscopy analysis.  相似文献   

5.
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate) (PBLG) by ring‐opening polymerizations of γ‐benzyl‐L ‐glutamic acid‐based N‐carboxylanhydrides (NCA‐BLG) using amino‐functionalized SWCNTs (SWCNT‐NH2) as initiators. The SWCNT functionalization has been verified by FTIR spectroscopy and transmission electron microscopy. The FTIR study reveals that surface‐attached PBLGs adopt random‐coil conformations in contrast to the physically absorbed or bulk PBLGs, which exhibit α‐helical conformations. Raman spectroscopic analysis reveals a significant alteration of the electronic structure of SWCNTs as a result of PBLG functionalization. The PBLG‐functionalized SWCNTs (SWCNT‐PBLG) exhibit enhanced solubility in DMF. Stable DMF solutions of SWCNT‐PBLG/PBLG with a maximum SWCNTs concentration of 259 mg L?1 can be readily obtained. SWCNT‐PBLG/PBLG solid composites have been characterized by differential scanning calorimetry, thermogravimetric analysis, wide/small‐angle X‐ray scattering (W/SAXS), scanning electron microscopy, and polarized optical microscopy for their thermal or morphological properties. Microfibers containing SWCNT‐PBLG and PBLG can also be prepared via electrospinning. WAXS characterization reveals that SWCNTs are evenly distributed among PBLG rods in solution and in the solid state where PBLGs form a short‐range nematic phase interspersed with amorphous domains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2340–2350, 2010  相似文献   

6.
Compliant electrodes to replace conventional metal electrodes have been required for many actuators to relieve the constraint on the electroactive layer. Many conducting polymers have been proposed for the alternative electrodes, but they still have a problem of poor thermal stability. This article reports a novel all- organic actuator with single wall carbon nanotube (SWCNT) films as an alternative electrode. The SWCNT film was obtained by filtering a SWCNT solution through an anodized alumina membrane. The conductivity of the SWCNT film was about 280 S/cm. The performance of the SWCNT film electrode was characterized by measuring the dielectric properties of NASA Langley Research Center – Electroactive Polymer (LaRC-EAP) sandwiched by the SWCNT electrodes over a broad range of temperature (from 25 to 280 °C) and frequency (from 1 kHz to 1 MHz). The all-organic actuator with the SWCNT electrodes showed a larger electric field-induced strain than that with metal electrodes, under identical measurement conditions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2532–2538, 2008  相似文献   

7.
傅强 《高分子科学》2014,32(2):245-254
The combined effects of stretching and single-walled carbon nanotubes (SWCNTs) on crystalline structure and mechanical properties were systematically investigated in melt-spun polypropylene (PP) fibers prepared at two different draw ratios. The dispersion, alignment of the SWCNT bundles and interfacial crystalline structure in the composite fibers are significantly influenced by the stretching force during the melt spinning. The nanohybrid shish kebab (NHSK) superstructure where extended PP chains and aligned SWCNT bundle as hybrid shish and PP lamellae as kebab has been successfully obtained in the composite fibers prepared at the high draw ratio and the related formation mechanism is discussed based on the results of morphological observations and 2d-SAXS patterns. Large improvement in tensile strength and modulus has been realized at the high draw ratio due to the enhanced orientation and dispersion of SWCNT bundles as well as the formation of NHSK.  相似文献   

8.
Electrochemical detection of p-nitrophenol (P-NP) using a highly sensitive and selective platform based on single-walled carbon nanotube/pyrenecyclodextrin (SWCNT/PyCD) nanohybrids is described for the first time. The electrochemical performance of the SWCNT/PyCD nanohybrid electrode was fully compared with bare glassy carbon, single-SWCNT, single-PyCD, and SWCNT/CD (without pyrene rings) electrodes. Besides the techniques of cyclic voltammetry and chronoamperometric transients, differential pulse voltammetry (DPV) has been used for the detection of P-NP without any interference from o-nitrophenol (O-NP) at the potentials of -0.80 and -0.67 V, respectively. The SWCNT/PyCD nanohybrid electrode is highly sensitive, and it shows an ultrahigh sensitivity of 18.7 μA/μM toward P-NP in contrast to the values reported previously. The detection limit (S/N = 3) of the SWCNT/PyCD nanohybrid electrode toward P-NP is 0.00086 μM (0.12 ppb), which is well below the allowed limit in drinking water, 0.43 μM, given by the U.S. Environmental Protection Agency (EPA). The analytical performance of the SWCNT/PyCD nanohybrid electrode toward P-NP is superior to the existing electrodes.  相似文献   

9.
S. Mohanapriya 《Talanta》2007,71(1):493-497
The quality of single-walled nanotubes (SWCNT) is usually assessed by means of electron microscopic techniques or Raman spectroscopy. However, these sophisticated techniques are not widely available and do not reliably estimate the impurities in highly heterogeneous samples containing metal particles, fullerenes and other carbonaceous materials. We have developed a simple, inexpensive and convenient spectrophotometric method to assess the purity of arc-discharge grown as-prepared SWCNT. Purification process consists of initial gas phase oxidation and refluxing with nitric acid at the optimal conditions including short time period during acid refluxing. We have shown that this method could remove the metal particles effectively with a good yield of high quality SWCNTs, as shown by the spectrophotometric and scanning tunneling microscope studies described here. The extent of removal of the nickel present in as-prepared carbon nanotube sample is followed by spectrophotometeric analysis of the dissolved nickel analyte. The composition of nickel in the SWCNT sample is found to be 17.56%. The method is based on the chelating of Ni2+ with dimethylglyoxime in ammoniacal citrate medium to form nickel dimethylglyoxime complex. A second stage purification of SWCNT eliminates the residual metal particles. The purified SWCNT has been studied using scanning tunneling microscopy which shows clearly resolved individual carbon nanotubes.  相似文献   

10.
In this paper, we have investigated the chemical bond interactions between covalently functionalized zigzag (5,0) and (8,0) SWCNT–SWCNT via various covalent linkages. Side-to-side junctions connected via amide, ester and anhydride linkages were particularly studied. The geometries and energy of the forming reaction were investigated using first-principles density functional theory. Furthermore, the band structures and the total density of states (DOS) of the junctions have also been analyzed. Our results show that several promising structures could be obtained by using chemical connection strategy and particularly the junctions formed by coupling amino functionalized SWCNT and carboxylic acid functionalized SWCNT was more favorable.  相似文献   

11.
A voltammetric method based on a combination of incorporated Nafion, single-walled carbon nanotubes and poly(3-methylthiophene) film-modified glassy carbon electrode (NF/SWCNT/PMT/GCE) has been successfully developed for selective determination of dopamine (DA) in the ternary mixture of dopamine, ascorbic acid (AA) and uric acid (UA) in 0.1M phosphate buffer solution (PBS) pH 4. It was shown that to detect DA from binary DA-AA mixture, the use of NF/PMT/GCE was sufficient, but to detect DA from ternary DA-AA-UA mixture NF/SWCNT/PMT/GCE was required. The later modified electrode exhibits superior electrocatalytic activity towards AA, DA and UA thanks to synergic effect of NF/SWCNT (combining unique properties of SWCNT such as high specific surface area, electrocatalytic and adsorptive properties, with the cation selectivity of NF). On the surface of NF/SWCNT/PMT/GCE AA, DA, UA were oxidized respectively at distinguishable potentials of 0.15, 0.37 and 0.53 V (vs. Ag/AgCl), to form well-defined and sharp peaks, making possible simultaneous determination of each compound. Also, it has several advantages, such as simple preparation method, high sensitivity, low detection limit and excellent reproducibility. Thus, the proposed NF/SWCNT/PMT/GCE could be advantageously employed for the determination of DA in real pharmaceutical formulations.  相似文献   

12.
Raman and in situ Raman spectroelectrochemical studies of Dy3N@C80@SWCNT peapods have been carried out for the first time. The formation of peapods by the encapsulation of gaseous Dy3N@C80 has been confirmed by HR-TEM microscopy and by the successful transformation of Dy3N@C80@SWCNT into double-walled carbon nanotubes. The Raman spectra of the endohedral fullerene cluster changed dramatically in the interior of the single-walled carbon nanotube (SWCNT). The electrochemical charging of the peapod indicates a slight reversible attenuation of the Raman intensities of fullerene features during anodic doping. The results support the assignment of Raman bands to the Dy3N@C80 moiety inside a SWCNT.  相似文献   

13.
A new method to grow bulk quantities of single-walled carbon nanotubes (SWCNTs) by a catalytic chemical vapor deposition (CVD) process with the possibility of varying the pressure has been developed and is reported in this paper. Thermal decomposition of ferrocene provides both catalytic particles and carbon sources for SWCNT growth using Ar as a carrier gas. Upon an increase in the pressure, the mean diameter of the SWCNTs decreases. In fact, high abundances of SWCNT with diameters as small as 0.7 nm, which is the limit for stable caps with isolated pentagons, can be obtained. An additional advantage of this method is that as no external carbon sources are required, SWCNT synthesis can be achieved at temperatures as low as 650 degrees C.  相似文献   

14.
15.
The structures of the (5,5) single-walled carbon nanotube (SWCNT) segments with hemispheric carbon cages capped at the ends (SWCNT rod) and the Pt-doped SWCNT rods have been studied within density functional theory. Our theoretical studies find that the hemispheric cages introduce localized states on the caps. The cap-Pt-doped SWCNT rods can be utilized as sensors because of the sensitivity of the doped Pt atom. The Pt-doped SWCNT rods can also be used as catalysts, where the doped Pt atom serves as the enhanced and localized active center on the SWCNT. The adsorptions of C(2)H(4) and H(2) on the Pt atom in the Pt-doped SWCNT rods reveal different adsorption characteristics. The adsorption of C(2)H(4) on the Pt atom in all of the three Pt-doped SWCNT rods studied (cap-end-doped, cap-doped, and wall-doped) is physisorption with the strongest interaction occurring in the middle of the sidewall of the SWCNT. On the other hand, the adsorption of H(2) on the Pt atom at the sidewall of the SWCNT is chemisorption resulting in the decomposition of H(2), and the adsorption of H(2) at the hemispheric caps is physisorption.  相似文献   

16.
Carboxylated single-walled carbon nanotubes (SWCNT) chemically assembled on gold substrate was employed as netlike electrode to investigate the charge-transfer process and electrode process kinetics using uric acid as an example. The electrochemical behavior of uric acid in carboxylated SWCNT system was investigated using cyclic voltammetry, chronoamperometry, and single potential time-based techniques. The properties of raw SWCNT electrode were also studied for comparison purpose. Uric acid has better electrochemical behavior whereas ascorbic acid has no effective reaction on the carboxylated SWCNT electrode. Cyclic voltammograms indicate that the assembled carboxylated SWCNT increases more active sites on electrode surface and slows down the electron transfer between the gold electrode and uric acid in solution. The charge-transfer coefficient (alpha) for uric acid and the rate constant (k) for the catalytic reaction were calculated as 0.52 and 0.43 s(-1), respectively. The diffusion coefficient of 0.5 mM uric acid was 7.5 x 10(-6) cm2 x s(-1). The results indicate that electrode process in the carboxylated SWCNT electrode system is governed by the surface adsorption-controlled electrochemical process.  相似文献   

17.
In an effort to design efficient platform for siRNA delivery, we combine all atom classical and quantum simulations to study the binding of small interfering RNA (siRNA) by pristine single wall carbon nanotube (SWCNT). Our results show that siRNA strongly binds to SWCNT surface via unzipping its base-pairs and the propensity of unzipping increases with the increase in the diameter of the SWCNTs. The unzipping and subsequent wrapping events are initiated and driven by van der Waals interactions between the aromatic rings of siRNA nucleobases and the SWCNT surface. However, molecular dynamics (MD) simulations of double strand DNA (dsDNA) of the same sequence show that the dsDNA undergoes much less unzipping and wrapping on the SWCNT in the simulation time scale of 70 ns. This interesting difference is due to smaller interaction energy of thymidine of dsDNA with the SWCNT compared to that of uridine of siRNA, as calculated by dispersion corrected density functional theory (DFT) methods. After the optimal binding of siRNA to SWCNT, the complex is very stable which serves as one of the major mechanisms of siRNA delivery for biomedical applications. Since siRNA has to undergo unwinding process with the effect of RNA-induced silencing complex, our proposed delivery mechanism by SWCNT possesses potential advantages in achieving RNA interference.  相似文献   

18.
Electron donor-acceptor hybrids based on single wall carbon nanotubes (SWCNT) are one of the most promising functional structures that are currently developed in the emerging areas of energy conversion schemes and molecular electronics. As a suitable electron donor, π-extended tetrathiafulvalene (exTTF) stands out owing to its recognition of SWCNT through π-π stacking and electron donor-acceptor interactions. Herein, we explore the shape and electronic complementarity between different types of carbon nanotubes (CNT) and a tweezers-shaped molecule endowed with two exTTFs in water. The efficient electronic communication between semiconducting SWCNT/multiwall carbon nanotubes (MWCNT), on one hand, and the water-soluble exTTF nanotweezers 8, on the other hand, has been demonstrated in the ground and excited state by using steady-state as well as time-resolved spectroscopies, which were further complemented by microscopy. Importantly, appreciable electronic communication results in the electronic ground state having a shift of electron density, that is, from exTTFs to CNT, and in the electronic excited state having a full separation of electron density, that is oxidized exTTF and reduced CNT. Lifetimes in the range of several hundred picoseconds, which were observed for the corresponding electron transfer products upon light irradiation, tend to be appreciably longer in MWCNT/8 than in SWCNT/8.  相似文献   

19.
Here, the interaction of single-walled carbon nanotubes (SWCNTs) and human serum albumin (HSA) as one of the most important proteins for carrying and binding of drugs was investigated and the impact of radius to volume ratio and chirality of the SWCNTs was evaluated using molecular docking method. Molecular docking results represented that zigzag SWCNT with radius to volume ratio equal to 6.77 × 10?3 Å?2 has the most negative binding energy (?17.16 kcal mol?1) and binds to the HSA cleft by four π–cation interactions. To study the changes of HSA structure, the complex of HSA–SWCNT was subjected to 30 ns molecular dynamics simulation. The MD results showed that HSA was compressed about 2% after interaction with SWCNT. The equilibrated structure of HSA–SWCNT complex was used to compare the binding of warfarin to HSA in the absence and presence of SWCNT. The obtained results represent that warfarin-binding site was changed in the presence of SWCNT and its binding energy was increased. Really, warfarin was bound on the surface of SWCNT instead of its binding site on HSA. It means that HSA function as a carrier for warfarin is altered, the free concentration of warfarin is changed, and its release is decreased in the presence of SWCNT.  相似文献   

20.
In this paper, we have investigated both the process of rare-gas atoms (He, Ne, Ar, Kr, Xe) injected into single-wall carbon nanotube (SWNT) and the mechanical oscillatory behavior of rare-gas atoms sliding in a SWCNT by using molecular dynamics simulations. The minimal diameters of SWCNT to encapsulate rare-gas atoms are obtained, which are from 6.246 to 7.828 A. The threshold energies to encapsulate rare-gas atoms in SWCNT are also presented, which are less than 0.15 eV/atom. The oscillatory frequencies of the encapsulated atoms in zigzag SWCNT have been studied. The oscillatory frequencies are insensitive to the initial kinetic energy, but they are sensitive to the lengths and the radius of the tube, and they decrease as the length and the radius of the tube increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号