首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 107 毫秒
1.
Coaxial nanocables of gallium phosphide (GaP) core with three different-typed single and double shells (i.e., silicon oxide (SiO(x)), carbon (C), and SiO(x)/C) were exclusively synthesized by the chemical vapor deposition method. The GaP/SiO(x)) nanocables were directly grown on gold-deposited silicon substrates. Deposition of C on the GaP nanowires and GaP/SiO(x) nanocables produces the GaP/C and GaP/SiO(x)/C nanocables, respectively. The outer diameter of the nanocables is <50 nm. The thickness and crystallinity of the C outer layers were controllable by the growth conditions. X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy, and photoluminescence reveal that the outer layer formation reduces the surface defects of GaP nanowires. A great enhancement of the conductivity due to the C outer layers has been measured by the four-probe method. The growth process of these nanocables has been discussed on the basis of the vapor-liquid-solid mechanism.  相似文献   

2.
One-dimensional gold/polyaniline (Au/PANI-CSA) coaxial nanocables with an average diameter of 50-60 nm and lengths of more than 1 mum were successfully synthesized by reacting aniline monomer with chlorauric acid (HAuCl(4)) through a self-assembly process in the presence of D-camphor-10-sulfonic acid (CSA), which acts as both a dopant and surfactant. It was found that the formation probability and the size of the Au/PANI-CSA nanocables depends on the molar ratio of aniline to HAuCl(4) and the concentration of CSA, respectively. A synergistic growth mechanism was proposed to interpret the formation of the Au/PANI-CSA nanocables. The directly measured conductivity of a single gold/polyaniline nanocable was found to be high (approximately 77.2 S cm(-1)). Hollow PANI-CSA nanotubes, with an average diameter of 50-60 nm, were also obtained successfully by dissolving the Au nanowire core of the Au/PANI-CSA nanocables.  相似文献   

3.
A simple hydrothermal method has been developed for the one-step synthesis of copper-core/carbon-sheath nanocables in solution. The obtained nanostructures were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM), Raman, and UV-vis spectrum analysis. These copper@carbon nanocables formed through the hydrothermal reduction/carbonization in the presence of surfactant cetyltrimethylammonium bromide (CTAB) acting as the structure-directing agent by hydrothermal treatment. HRTEM and selected-area electron diffraction (SAED) indicate that the resulted Cu nanowires had the preferred [110] growth direction. The influence of the reaction temperature, reaction time, and pH on the final products was investigated in detail. The possible formation mechanism for copper-core/carbon-sheath nanocables was also proposed. Amorphous carbon nanotubes can be obtained by etching the copper core in the nanocables.  相似文献   

4.
High-yield silver/polymer/carbon nanocables were synthesized via a one-step simple hydrothermal route by using silver chloride and glucose as precursors. High-resolution TEM and element mapping proved that as-prepared nanocables consist of a silver nanowire core, a polymer inner shell, and a graphitic carbon outer shell. A three-step growth mechanism was proposed to explain the growth of such three-layer nanocables, i.e. the formation of silver nanowires, the glycosidation of glucose molecules on silver nanowire surface and the carbonization of the outmost glycosidation layer. We believe that reaction temperature plays the key role in the polymerization of glucose and sequent surface-carbonization.  相似文献   

5.
采用同轴静电纺丝技术,以氧化钇、氧化铕、正硅酸乙酯(C8H20O4Si)、无水乙醇、PVP和DMF为原料,成功制备出大量的Y2O3:Eu3+@SiO2豆角状纳米电缆.用TG-DTA,XRD,SEM,TEM和荧光光谱等分析技术对样品进行了系统地表征.结果表明,得到的产物为Y2O3:Eu3+@SiO2豆角状纳米电缆,以无定型SiO2为壳层,晶态Y2O3:Eu3+球为芯,电缆直径约为200nm,内部球平均直径约150nm,壳层厚度约为25nm,电缆长度300μm.纳米电缆内部为球状结构,沿着纤维长度方向有序排列,形貌均一.Y2O3:Eu3+@SiO2豆角状纳米电缆在246nm紫外光激发下,发射出Eu3+离子特征的波长为614nm的明亮红光.对其形成机理进行了初步讨论.  相似文献   

6.
Summary: Copper/poly(vinyl alcohol) (PVA) nanocables have been successfully obtained by electrospinning a PVA‐protected copper nanoparticle solution. The molar ratio of copper ions to PVA (in terms of VA repeating units) plays an important role in the formation of copper/PVA nanocables. The average diameter of the copper cores and PVA shells is about 100 and 400 nm, respectively. The structures of the copper/PVA nanocables are characterized by transmission electron microscopy (TEM) and their formation is confirmed by scanning electron microscopy (SEM).

TEM image of a copper/PVA nanocable.  相似文献   


7.
One-step fabrication of uniform Si-core/CdSe-sheath nanocables   总被引:1,自引:0,他引:1  
A simple one-step thermal evaporation of CdSe powder using Si substrate at controlled conditions results in ultrauniform Si-core/CdSe-sheath nanocables. These nanocables are approximately 80 nm in diameter and several tens of micrometers in length. Detailed microstructure and chemical composition analysis of the nanocables indicates that they are composed of a single crystalline Si (cubic) core and CdSe (hexagonal) sheath. The experimental evidence suggested that the Si nanowires can be directly grown from the Si substrate via an oxide-assisted growth mechanism and further served as templates for CdSe, resulting in nanocable heterostructures.  相似文献   

8.
Ma D  Zhang M  Xi G  Zhang J  Qian Y 《Inorganic chemistry》2006,45(12):4845-4849
A novel complex-assisted hydrothermal route is presented to fabricate ultralong Ag/C nanocables with length ranging from 100 to 180 microm on a large scale, based on the reaction of sulfamic acid silver and salicylic acid. By chemical etching of these Ag/C nanocables, high-quality carbonaceous nanotubes can be obtained at room temperature. Using the as-prepared Ag/C nanocables as templates, a new strategy for introducing guest materials into hollow nanotubes is addressed. We take Ag(2)Se as an example and validate the feasibility of this strategy. All of the products are characterized in detail by multiform techniques: X-ray diffraction, Fourier transform IR, energy-dispersive X-ray analysis, field emission scanning electron microscopy, transmission electron microscopy (TEM), and high-resolution TEM. The formation mechanisms of these products are tentatively proposed.  相似文献   

9.
以多壁碳纳米管(MWCNT)为模板,通过正硅酸乙酯(TEOS)的水解缩聚反应制得MWCNT@SiO2纳米同轴电缆.采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)和电化学测试对样品的形貌、结构及电化学性能进行表征.结果表明,MWCNT表面包覆了一层厚度均匀的多孔SiO2层,利于其获得较好的储锂性能.作为锂离子电池负极材料,MWCNT@SiO2纳米同轴电缆表现出了较高的比容量和较好的循环性能.在100 m A/g电流密度下经过80次循环,MWCNT@SiO2纳米同轴电缆的放电比容量仍高达431.7 m A·h/g,高于石墨材料的理论比容量(372 m A·h/g).  相似文献   

10.
An effective method for synthesizing ZnS-core/carbon-sheath nanocables and nanocable-aligned ZnS tetrapod nanocrystals has been developed. Nanocable heterostructures and nanocable-linked ZnS tetrapods were synthesized in a controllable way. The tetrapods are single crystalline cubic ZnS with triangular-prism branches stretching out in four {111} directions. The tetrapods were aligned together with ZnS-C nanocables along the [100] direction.  相似文献   

11.
A novel Ag/C nanocable and epoxy resin composite was obtained by compounding Ag/C nanocables and epoxy resin. The nanocable is composed of a nanowire (core) wrapped with one or more outer layers (shell). Scanning electron microscopy images proved that the nanocables consisted of a silver nanowire core and a carbon outer shell. The Ag/C nanocables were modified by hyperbranched poly (amine ester) to improve their mechanical properties for further application. We separately compounded raw and modified Ag/C nanocables with epoxy resin, and then tested the thermal performance, tensile properties, and fracture morphology of each composite. We found that the tensile strengths of the two composite systems were enhanced by the epoxy resin, with the modified (Ag/C)/epoxy resin composite system improving more significantly. Differential scanning calorimeter (DSC) results showed that the glass transition temperature of the unmodified (Ag/C)/epoxy resin composite is increased when the Ag/C nanocable is filled, while that of the modified system slightly decreased. Fracture morphology results showed that both (Ag/C)/epoxy composite systems featured increased toughness. The modified Ag/C nanocables had better compatibility with the epoxy resin. The relationship between the properties and microstructure of the composites were discussed in detail to explain the mechanism behind the observed changes in material properties.  相似文献   

12.
We describe here a new approach to the synthesis of size-controllable polypyrrole/carbon nanotube (CNT) nanocables by in situ chemical oxidative polymerization directed by the cationic surfactant cetyltrimethylammonium bromide (CTAB) or the nonionic surfactant polyethylene glycol mono-p-nonylphenyl ether (Opi-10). When carbon nanotubes are dispersed in a solution containing a certain concentration of CTAB or Opi-10, the surfactant molecules are adsorbed and arranged regularly on the CNT surfaces. On addition of pyrrole, some of the monomer is adsorbed at the surface of CNTs and/or wedged between the arranged CTAB or Opi-10 molecules. When ammonium persulfate (APS) is added, pyrrole is polymerized in situ at the surfaces of the CNTs (core layer) and ultimately forms the outer shell of the nanocables. Such polypyrrole/CNT nanocables show enhanced electrical properties; a negative temperature coefficient of resistance at 77-300 K and a negative magnetoresistance at 10-200 K were observed.  相似文献   

13.
The morphology of CdSe/SiO(2) was manipulated from core-shell-structured nanoparticles to nanocables by using a chemical vapor deposition (CVD) process. The growth of nanocables, with cores no more than 20 nm in diameter, is initiated by the formation of core-shell nanoparticles with SiO(2) as matrix and CdSe clusters dispersed inside. After the subsequent vaporization of the SiO(2) matrix, the follow-up CdSe vapor crystallizes with the remaining CdSe clusters as nuclei to form CdSe nanowires as the furnace was cooled to 1200 degrees C. During the controlled cooling of the furnace, the SiO vapor re-deposits to sheathe the nanowires. The thickness of the shell and the diameter of core were successfully controlled. The photoluminescence measurements show that the CdSe/SiO(2) nanocables have strong visible-light emission bands located at 590 and 688 nm, which are attributed to the defects induced by SiO(2) sheaths nanowires and the quantum confinement effect of the CdSe, respectively. The UV/Vis absorption spectra of the naked CdSe nanowires further validate the above-mentioned quantum confinement effect. The deterministic growth of these nanocables is very important for the design of the nanodevices based on them.  相似文献   

14.
采用同轴静电纺丝技术,以硝酸铈、硝酸锌、聚乙烯吡咯烷酮、N,N-二甲基甲酰胺、甘油和氯仿为原料,制备了ZnO@CeO2 同轴纳米电缆。用差热–热重分析、X射线衍射、扫描电镜、透射电镜和能谱仪对样品进行了表征。结果表明,所得到的产物为ZnO@CeO2同轴纳米电缆,以晶态CeO2为壳层,晶态ZnO为芯层,电缆直径约90 nm,芯层直径约60 nm,壳层厚度约15 nm,电缆长度>300 μm,对其形成机理进行了分析。  相似文献   

15.
Aligned coaxial nanocables were grown on Si substrates by a vapor-deposition technique. The lengths of the nanocables increased as the distance between the substrate and the source decreased. The nanocables were characterized as homogeneously crystallized shells of about 25 nm thick, diameters of about 100 nm, and round top ends. It was found that the shell emits an intense middle-ultraviolet about 300 nm at room temperature. This emission was attributed to the thin double-layer structure in the Zn-Zn2SiO4 core-shell nanocable where the Zn2SiO4 shell has the potential to serve as more ideal luminophors. The results demonstrated that the nanocable density could be changed by altering nucleation density at the steps on the substrate surface. The unique growth manner described herein provides a new technique for the homogeneous crystallization of Zn-Zn2SiO4 core-shell nanocables.  相似文献   

16.
We describe a new synthetic approach to fabricate Ni/Cu nanocable arrays by co-depositing nickel and copper atoms into the pores of anodic alumina membranes and to fabricate Ni nanotube arrays by selectively etching the Cu cores from the Ni/Cu nanocable arrays. The formation of the Ni-shelled Ni/Cu nanocables is attributed to the Ni ions adsorbed on the pore walls by a chemical complexation through hydroxyl groups. By varying electrodepositon parameters in this technique, we can control the lengths of nanocables and nanotubes, the shell thickness of the nanocables, and the wall thickness and surface morphology of the nanotubes.  相似文献   

17.
采用同轴静电纺丝技术, 以氧化钇、氧化铕、正硅酸乙酯(C8H20O4Si)、无水乙醇、PVP和DMF为原料, 成功制备出大量的Y2O3:Eu3+@SiO2豆角状纳米电缆. 用TG-DTA, XRD, SEM, TEM和荧光光谱等分析技术对样品进行了系统地表征. 结果表明, 得到的产物为Y2O3:Eu3+@SiO2豆角状纳米电缆, 以无定型SiO2为壳层, 晶态Y2O3:Eu3+球为芯, 电缆直径约为200 nm, 内部球平均直径约150 nm, 壳层厚度约为25 nm, 电缆长度>300 μm. 纳米电缆内部为球状结构, 沿着纤维长度方向有序排列, 形貌均一. Y2O3:Eu3+@SiO2豆角状纳米电缆在246 nm紫外光激发下, 发射出Eu3+离子特征的波长为614 nm的明亮红光. 对其形成机理进行了初步讨论.  相似文献   

18.
以混合的锌粉和锡粉作为原料, 通过热蒸发的方法在沉积有金膜的硅基片上制备出具有“芯线-壳层”同轴结构的ZnO/SiOx纳米电缆. 扫描和透射电镜的研究表明, 这种纳米电缆的产量很高, 长度达到数个微米, 并且确认了其“芯线-壳层”的独特结构. 不同于以往ZnO一维纳米材料的三个快速生长方向〈0001〉、〈0110〉及〈2110〉, 其ZnO芯线的生长方向为[2021]. 本实验中锡粉和金膜分别作为抑制剂和催化剂, 通过控制锌粉的蒸发速率以及金硅共熔反应使ZnO纳米电缆在硅基片上得到一维生长. 这种纳米电缆可望在纳米尺度的电路、电器以及力学和光学信号的耦合和转换方面得到应用.  相似文献   

19.
采用同轴静电纺丝技术,以硝酸锌、正硅酸乙酯(C8H20O4Si)、无水乙醇、聚乙烯吡咯烷酮(PVP)和N,N-二甲基甲酰胺(DMF)为原料,成功制备出大量的ZnO@SiO2同轴纳米电缆。用TG-DTA,XRD,SEM,TEM,FTIR等分析技术对样品进行了表征。结果表明,得到的ZnO@SiO2同轴纳米电缆的壳层为无定型SiO2,厚度为50nm,芯轴为晶态ZnO,电缆直径为300~450nm,长度大于300μm。探讨了ZnO@SiO2同轴纳米电缆的形成机理。  相似文献   

20.
ZnS-Zn nanocables and ZnS nanotubes have been synthesized by a thermochemical process in a simple and safe way. The as-prepared nanocables consist of a single crystal Zn core with a diameter of 20 nm and a polycrystalline ZnS sheath with a thickness of 8 nm. The evaporation of the Zn core leads to the formation of ZnS nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号