首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Letl andk be positive integers, and letX={0,1,...,l k?1}. Is it true that for every coloring δ:X×X→{0,1,...} there either exist elementsx 0<x 1<...<x l ofX with δ(x 0,x 1)=δ(x 1,x 2)=...=δ(x l?1,x l), or else there exist elementsy 0<y 1<...<y k ofX with δ(y i?1,y i) ∈ δ(y j?1,y j) for all 1<-i<jk? We prove here that this is the case if eitherl≤2, ork≤4, orl≥(3k)2k . The general question remains open.  相似文献   

2.
In the space of variables (x, t) ∈ ? n+1, we consider a linear second-order hyperbolic equation with coefficients depending only on x. Given a domain D ? ? n+1 whose projection to the x-space is a compact domain Ω, we consider the question of construction of a stability estimate for a solution to the Cauchy problem with data on the lateral boundary S of D. The well-known method for obtaining such estimates bases on the Carleman estimates with an exponential-type weight function exp(2τ?(x, t)) whose construction faces certain difficulties in case of hyperbolic equations with variable coefficients. We demonstrate that if D is symmetric with respect to the plane t = 0 then we can take ?(x, t) to be the function ?(x, t) = s 2(x, x 0) ? pt 2, where s(x, x 0) is the distance between points x and x 0 in the Riemannian metric induced by the differential equation, p is some positive number less than 1, and the fixed point x 0 can either belong to the domain Ω or lie beyond it. As for the metric, we suppose that the sectional curvature of the corresponding Riemannian space is bounded above by some number k 0 ≥ 0. In case of space of nonpositive curvature the parameter p can be taken arbitrarily close to 1; in this case as p → 1 the stability estimates lead to a uniqueness theorem which describes exactly the domain of the solution continuation through S. It turns out that, in case of space of bounded positive curvature, construction of a Carleman estimate is possible only if the product of k 0 and sup x∈Ω s 2(x, x 0) satisfies some smallness condition.  相似文献   

3.
Letf(x) ∈L p[0,1], 1?p? ∞. We shall say that functionf(x)∈Δk (integerk?1) if for anyh ∈ [0, 1/k] andx ∈ [0,1?kh], we have Δ h k f(x)?0. Denote by ∏ n the space of algebraic polynomials of degree not exceedingn and define $$E_{n,k} (f)_p : = \mathop {\inf }\limits_{\mathop {P_n \in \prod _n }\limits_{P_n^{(\lambda )} \geqslant 0} } \parallel f(x) - P_n (x)\parallel _{L_p [0,1]} .$$ We prove that for any positive integerk, iff(x) ∈ Δ k ∩ L p[0, 1], 1?p?∞, then we have $$E_{n,k} (f)_p \leqslant C\omega _2 \left( {f,\frac{1}{n}} \right)_p ,$$ whereC is a constant only depending onk.  相似文献   

4.
The eigenfunctions of the one dimensional Schrödinger equation Ψ″ + [E ? V(x)]Ψ=0, where V(x) is a polynomial, are represented by expansions of the form k=0ck?k(ω, x). The functions ?k (ω, x) are chosen in such a way that recurrence relations hold for the coefficients ck: examples treated are Dk(ωx) (Weber-Hermite functions), exp (?ωx2)xk, exp (?cxq)Dk(ωx). From these recurrence relations, one considers an infinite bandmatrix whose finite square sections permit to solve approximately the original eigenproblem. It is then shown how a good choice of the parameter ω may reduce dramatically the complexity of the computations, by a theoretical study of the relation holding between the error on an eigenvalue, the order of the matrix, and the value of ω. The paper contains tables with 10 significant figures of the 30 first eigenvalues corresponding to V(x) = x2m, m = 2(1)7, and the 6 first eigenvalues corresponding to V(x) = x2 + λx10 and x2 + λx12, λ = .01(.01).1(.1)1(1)10(10)100.  相似文献   

5.
We consider an inverse boundary value problem for the heat equation ? t u = div (γ? x u) in (0, T) × Ω, u = f on (0, T) × ?Ω, u| t=0 = u 0, in a bounded domain Ω ? ? n , n ≥ 2, where the heat conductivity γ(t, x) is piecewise constant and the surface of discontinuity depends on time: γ(t, x) = k 2 (x ∈ D(t)), γ(t, x) = 1 (x ∈ Ω?D(t)). Fix a direction e* ∈ 𝕊 n?1 arbitrarily. Assuming that ?D(t) is strictly convex for 0 ≤ t ≤ T, we show that k and sup {ex; x ∈ D(t)} (0 ≤ t ≤ T), in particular D(t) itself, are determined from the Dirichlet-to-Neumann map : f → ?ν u(t, x)|(0, T)×?Ω. The knowledge of the initial data u 0 is not used in the proof. If we know min0≤tT (sup xD(t) x·e*), we have the same conclusion from the local Dirichlet-to-Neumann map. Numerical examples of stationary and moving circles inside the unit disk are shown. The results have applications to nondestructive testing. Consider a physical body consisting of homogeneous material with constant heat conductivity except for a moving inclusion with different conductivity. Then the location and shape of the inclusion can be monitored from temperature and heat flux measurements performed at the boundary of the body. Such a situation appears for example in blast furnaces used in ironmaking.  相似文献   

6.
The univariate multiquadric function with centerx j R has the form {? j (x)=[(x?x j )2+c 2]1/2, x∈R} wherec is a positive constant. We consider three approximations, namely, ? A f, ?? f, and ? C f, to a function {f(x),x 0xx N } from the space that is spanned by the multiquadrics {? j :j=0, 1, ...,N} and by linear polynomials, the centers {x j :j=0, 1,...,N} being given distinct points of the interval [x 0,x N ]. The coefficients of ? A f and ?? f depend just on the function values {f(x j ):j=0, 1,...,N}. while ? A f, ? C f also depends on the extreme derivativesf′(x 0) andf′(x N ). These approximations are defined by quasi-interpolation formulas that are shown to give good accuracy even if the distribution of the centers in [x 0,x N ] is very irregular. Whenf is smooth andc=O(h), whereh is the maximum distance between adjacent centers, we find that the error of each quasi-interpolant isO(h 2|logh|) away from the ends of the rangex 0xx N. Near the ends of the range, however, the accuracy of ? A f and ?? f is onlyO(h), because the polynomial terms of these approximations are zero and a constant, respectively. Thus, some of the known accuracy properties of quasiinterpolation when there is an infinite regular grid of centers {x j =jh:jF} given by Buhmann (1988), are preserved in the case of a finite rangex 0xx N , and there is no need for the centers {x j :j=0, 1, ...,N} to be equally spaced.  相似文献   

7.
For an arbitrary element x with spectrum sp(x) in a Banach algebra with identity e ≠ 0 we define the upper (lower) spectral abscissa \(\mathop {\sigma + (x)}\limits_{( - )} = \mathop {\max }\limits_{(\min )} \operatorname{Re} \lambda ,\lambda \in sp(x)\) . With the aid of the spectral radius \(\rho (x) = \mathop {\max }\limits_{\lambda \in sp(x)} \left| \lambda \right| = \mathop {\lim }\limits_{n \to + \infty } \parallel x^n {{1 - } \mathord{\left/ {\vphantom {{1 - } n}} \right. \kern-0em} n}\) we prove the following bounds: γ?(x)?σ?(x)?Γ?(x)?+(x)?σ+(x)?γ+(x), Γ(±)(x)=(2δ(±))?1 δ 2 )(±) (±) 2 0 2 )(δ(±)≠0), γ(±)(x)= (±)ρδ(±)?δ(±), δ+?0, δ??0 ρ (±) δ = ρ(x+eδ(±)). We mention a case where equality is achieved, some corollaries,and discuss the sharpness of the bounds: for every ? > 0 there is a δ: ¦δ¦ ≥ρ 0 2 /2?, such that Δ: = ¦γ(±) x(±) x¦?ε and conversely, if the bounds are computed for some δ ≠ 0, then △ ≤ρ 0 2 /2 ¦δ¦. An example is considered.  相似文献   

8.
In this paper we consider a super-Brownian motion X with branching mechanism k(x)zα, where k(x) > 0 is a bounded Holder continuous function on Rd and infx∈Rd k(x) = 0. We prove that if k(x) ≥ //x// -l(0 ≤l < ∞) for sufficiently large x, then X has compact support property, and for dimension d = 1, if k(x) ≥exp(-l‖x‖)(0≤l < ∞) for sufficiently large x, then X also has compact support property. The maximal order of k(x) for finite time extinction is different between d = 1, d = 2 and d ≥ 3: it is O(‖x‖-(α+1)) in one dimension, O(‖x‖-2(log‖x‖)-(α+1) ) in two dimensions, and O(‖x‖2) in higher dimensions. These growth orders also turn out to be the maximum order for the nonexistence of a positive solution for 1/2Δu =k(x)uα.  相似文献   

9.
We consider a linear micropolar viscoelastic solid occupying a domainB in dynamical conditions. First, on assuming thatB is of the kindB={∈R:x’ =(x 1,x 2)∈D(x 3);x 3∈R++}, and that the body is subjected to boundary data different from zero only onD(0), we estimate for any fixedt>0, in terms of the initial and boundary data, the «energy» of the portions of the solid at distance greater thanz fromD(0)(g t(z)) and its norm inL 1(0,t) (Gt(z)). Moreover we show that, if there exists somez 0≥0, such that past histories vanish onD(z) withz≥z 0, then for any fixedt>0 the points (x’’, z) withz?z 0≥Vt are at rest, while forz?z 0≤Vt, Gt(z) decays withz?z 0, the decay rate being described by the factor $1 - \frac{{z - z_0 }}{{Vt}}$ .V is a computable positive constant depending on the relaxation functions, the mass density and the microinertial tensor. Finally these last results are extended to more general domains under the hypothesis that the initial and boundary data have a bounded support. In our analysis we make use of a Maximal Free Energy which allows us to impose very mild restrictions on the relaxation functions.  相似文献   

10.
Let ?1<α≤0 and let $$L_n^{(\alpha )} (x) = \frac{1}{{n!}}x^{ - \alpha } e^x \frac{{d^n }}{{dx^n }}(x^{\alpha + n} e^{ - x} )$$ be the generalizednth Laguerre polynomial,n=1,2,… Letx 1,x 2,…,x n andx*1,x*2,…,x* n?1 denote the roots ofL n (α) (x) andL n (α)′ (x) respectively and putx*0=0. In this paper we prove the following theorem: Ify 0,y 1,…,y n ?1 andy 1 ,…,y n are two systems of arbitrary real numbers, then there exists a unique polynomialP(x) of degree 2n?1 satisfying the conditions $$\begin{gathered} P\left( {x_k^* } \right) = y_k (k = 0,...,n - 1) \hfill \\ P'\left( {x_k } \right) = y_k^\prime (k = 1,...,n). \hfill \\ \end{gathered} $$ .  相似文献   

11.
Let u(x) be a function analytic in some neighborhood D about the origin, $ \mathcal{D} Let u(x) be a function analytic in some neighborhood D about the origin, ⊂ ℝ n . We study the representation of this function in the form of a series u(x) = u 0(x) + |x|2 u 1(x) + |x|4 u 2(x) + …, where u k (x) are functions harmonic in . This representation is a generalization of the well-known Almansi formula. Original Russian Text ? V. V. Karachik, 2007, published in Matematicheskie Trudy, 2007, Vol. 10, No. 2, pp. 142–162.  相似文献   

12.
We prove that if a functionfC (1) (I),I: = [?1, 1], changes its signs times (s ∈ ?) within the intervalI, then, for everyn > C, whereC is a constant which depends only on the set of points at which the function changes its sign, andk ∈ ?, there exists an algebraic polynomialP n =P n (x) of degree ≤n which locally inherits the sign off(x) and satisfies the inequality $$\left| {f\left( x \right) - P_n \left( x \right)} \right| \leqslant c\left( {s,k} \right)\left( {\frac{1}{{n^2 }} + \frac{{\sqrt {1 - x^2 } }}{n}} \right)\omega _k \left( {f'; \frac{1}{{n^2 }} + \frac{{\sqrt {1 - x^2 } }}{n}} \right), x \in I$$ , where ω k (f′;t) is thekth modulus of continuity of the functionf’. It is also shown that iffC (I) andf(x) ≥ 0,xI then, for anynk ? 1, there exists a polynomialP n =P n (x) of degree ≤n such thatP n (x) ≥ 0,xI, and |f(x) ?P n (x)| ≤c(k k (f;n ?2 +n ?1 √1 ?x 2),xI.  相似文献   

13.
Some parallel results of Gross' paper (Potential theory on Hilbert space, J. Functional Analysis1 (1967), 123–181) are obtained for Uhlenbeck-Ornstein process U(t) in an abstract Wiener space (H, B, i). Generalized number operator N is defined by Nf(x) = ?lim∈←0{E[f(Uξ))] ? f(x)}/Eξ, where τx? is the first exit time of U(t) starting at x from the ball of radius ? with center x. It is shown that Nf(x) = ?trace D2f(x)+〈Df(x),x〉 for a large class of functions f. Let rt(x, dy) be the transition probabilities of U(t). The λ-potential Gλf, λ > 0, and normalized potential Rf of f are defined by Gλf(X) = ∫0e?λtrtf(x) dt and Rf(x) = ∫0 [rtf(x) ? rtf(0)] dt. It is shown that if f is a bounded Lip-1 function then trace D2Gλf(x) ? 〈DGλf(x), x〉 = ?f(x) + λGλf(x) and trace D2Rf(x) ? 〈DRf(x), x〉 = ?f(x) + ∫Bf(y)p1(dy), where p1 is the Wiener measure in B with parameter 1. Some approximation theorems are also proved.  相似文献   

14.
A tree is called starlike if it has exactly one vertex of degree greater than two. In [4] it was proved that two starlike treesG andH are cospectral if and only if they are isomorphic. We prove here that there exist no two non-isomorphic Laplacian cospectral starlike trees. Further, letG be a simple graph of ordern with vertex setV(G)={1,2, …,n} and letH={H 1,H 2, ...H n } be a family of rooted graphs. According to [2], the rooted productG(H) is the graph obtained by identifying the root ofH i with thei-th vertex ofG. In particular, ifH is the family of the paths $P_{k_1 } , P_{k_2 } , ..., P_{k_n } $ with the rooted vertices of degree one, in this paper the corresponding graphG(H) is called the sunlike graph and is denoted byG(k 1,k 2, …,k n ). For any (x 1,x 2, …,x n ) ∈I * n , whereI *={0,1}, letG(x 1,x 2, …,x n ) be the subgraph ofG which is obtained by deleting the verticesi 1, i2, …,i j ∈ V(G) (0≤j≤n), provided that $x_{i_1 } = x_{i_2 } = ... = x_{i_j } = 0$ . LetG(x 1,x 2,…, x n] be the characteristic polynomial ofG(x 1,x 2,…, x n ), understanding thatG[0, 0, …, 0] ≡ 1. We prove that $$G[k_1 , k_2 ,..., k_n ] = \Sigma _{x \in ^{I_ * ^n } } \left[ {\Pi _{i = 1}^n P_{k_i + x_i - 2} (\lambda )} \right]( - 1)^{n - (\mathop \Sigma \limits_{i = 1}^n x_i )} G[x_1 , x_2 , ..., x_n ]$$ where x=(x 1,x 2,…,x n );G[k 1,k 2,…,k n ] andP n (γ) denote the characteristic polynomial ofG(k 1,k 2,…,k n ) andP n , respectively. Besides, ifG is a graph with λ1(G)≥1 we show that λ1(G)≤λ1(G(k 1,k 2, ...,k n )) < for all positive integersk 1,k 2,…,k n , where λ1 denotes the largest eigenvalue.  相似文献   

15.
Some estimates for simultaneous polynomial approximation of a function and its derivatives are obtained. These estimates are exact in a certain sense. In particular, the following result is derived as a corollary: Forf∈C r[?1,1],mN, and anyn≥max{m+r?1, 2r+1}, an algebraic polynomialP n of degree ≤n exists that satisfies $$\left| {f^{\left( k \right)} \left( x \right) - P_n^{\left( k \right)} \left( {f,x} \right)} \right| \leqslant C\left( {r,m} \right)\Gamma _{nrmk} \left( x \right)^{r - k} \omega ^m \left( {f^{\left( r \right)} ,\Gamma _{nrmk} \left( x \right)} \right),$$ for 0≤k≤r andx ∈ [?1,1], where ωυ(f(k),δ) denotes the usual vth modulus of smoothness off (k), and Moreover, for no 0≤k≤r can (1?x 2)( r?k+1)/(r?k+m)(1/n2)(m?1)/(r?k+m) be replaced by (1-x2)αkn2αk-2, with αk>(r-k+a)/(r-k+m).  相似文献   

16.
In this paper we establish existence of solutions of singular boundary value problem ?(p(x)y (x))=q(x)f(x,y,py′) for 0<xb and $\lim_{x\rightarrow0^{+}}p(x)y^{\prime}(x)=0$ , α 1 y(b)+β 1 p(b)y (b)=γ 1 with p(0)=0 and q(x) is allowed to have integrable discontinuity at x=0. So the problem may be doubly singular. Here we consider $\lim_{x\rightarrow0^{+}}\frac{q(x)}{p'(x)}\neq0$ therefore $\lim_{x\rightarrow0^{+}}p(x)y'(x)=0$ does not imply y′(0)=0 unless $\lim_{x\rightarrow0^{+}}f(x,y(x),p(x)y'(x))=0$ .  相似文献   

17.
Summary Given an iterative methodM 0, characterized byx (k+1=G 0(x( k )) (k0) (x(0) prescribed) for the solution of the operator equationF(x)=0, whereF:XX is a given operator andX is a Banach space, it is shown how to obtain a family of methodsM p characterized byx (k+1=G p (x( k )) (k0) (x(0) prescribed) with order of convergence higher than that ofM o. The infinite dimensional multipoint methods of Bosarge and Falb [2] are a special case, in whichM 0 is Newton's method.Analogues of Theorems 2.3 and 2.36 of [2] are proved for the methodsM p, which are referred to as extensions ofM 0. A number of methods with order of convergence greater than two are discussed and existence-convergence theorems for some of them are proved.Finally some computational results are presented which illustrate the behaviour of the methods and their extensions when used to solve systems of nonlinear algebraic equations, and some applications currently being investigated are mentioned.  相似文献   

18.
A linear differential operator P(x, D) = P(x1,... x n , D1,..., D n ) = ∑αγα(x)Dα with coefficients γα(x) defined in E n is called formally almost hypoelliptic in E n if all the derivatives DνξP(x, ξ) can be estimated by P(x, ξ), and the operator P(x, D) has uniformly constant power in En. In the present paper, we prove that if P(x, D) is a formally almost hypoelliptic operator, then all solutions of equation P(x, D)u = 0, which together with some of their derivatives are square integrable with a specified exponential weight, are infinitely differentiable functions.  相似文献   

19.
The following limit theorem on Hamiltonian systems (resp. corresponding Riccati matrix equations) is shown: Given(N, N)-matrices,A, B, C andn ∈ {1,…, N} with the following properties:A and kemelB(x) are constant, rank(I, A, …, A n?1) B(x)≠N,B(x)C n(R), andB(x)(A T)j-1 C(x)∈C n-j(R) forj=1, …, n. Then \(\mathop {\lim }\limits_{x \to x_0 } \eta _1^T \left( x \right)V\left( x \right)U^{ - 1} \left( x \right)\eta _2 \left( x \right) = d_1^T \left( {x_0 } \right)U\left( {x_0 } \right)d_2 \) forx 0R, whenever the matricesU(x), V(x) are a conjoined basis of the differential systemU′=AU + BV, V′=CU?A TV, and whenever ηi(x)∈R N satisfy ηi(x 0)=U(x 0)d i ∈ imageU(x 0) η′i-Aηni(x) ∈ imageB(x),B(x)(η′i(x)-Aηi(x)) ∈C n-1 R fori=1,2.  相似文献   

20.
For the singular operator $$Su = \int_a^b {\frac{{K(x, s) u (s)}}{{s - x}}} ds$$ invariant weight spacesλ α β , p (u(x)∈λ α β , p if 10,u (x) ρ (x)∈ H β 0 , 20.‖uL p0)<∞, ρ (x) = (x?a) (b ?x)1+β, ρ0(x)=(b?x)α(p?1), 0<α, β<1,p>1H 0 β is a Hölder space. Multiplicative inequalities of the type of Kh. Sh. Mukhtarov are also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号