首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
我们利用光荧光(PL)以及时间分辨光谱(TRPL)研究了用MBE生长在GaAs衬底上的GaNAs/GaAs量子阱的激子局域化以及退局域化.研究发现,在低温下用连续光(Cw)激发,由于GaNAs中势振荡所产生的局域激子发光是所测量到光谱的主要发光来源.然而在脉冲激发下,情况完全不同.在高载流子密度激发或者高温下GaNAs/GaAs量子阱中例外,一个高能端的PL峰成为了主要的发光来源.通过研究,我们将这个新的发光峰指认为量子阱中非局域激子复合的PL峰.这个发光峰在温度和激发强度的变化过程中与局域激子相互竞争.我们相信这一过程也是许多文献所报道的在InGaN和AlGaN等氮化物中经常观测到的发光峰位随温度"S"形变化的主要根源.  相似文献   

2.
The lack of appropriate substrates has delayed the realisation of devices based on IIInitrides. Currently, the heteroepitaxial growth of GaN by metal organic vapour phase epitaxy (MOVPE) produces GaN layers which, despite huge densities of dislocations, allow the fabrication of highly efficient optoelectronic devices. Henceforth, a new technology in heteroepitaxy of GaN, the epitaxial lateral overgrowth (ELO) has produced GaN layers in which the density of dislocations has been reduced by several orders of magnitude. With the ELO, nitride based laser diodes (LDs) working at room temperature in cw mode with a lifetime of 10,000 hours have been demonstrated by Nichia. In addition to LDs, IIInitrides presently offer a wide range of applications in optoelectronics (high brightness light emitting diodes (LEDs), from amber to UV, solar blind detectors); in electronics, high temperature/high power field effect transistors (FETs). The development of molecular beam epitaxy (MBE) of nitrides has been hindered during several years by the lack of an efficient nitrogen source. This problem being solved, MBE has recently demonstrated state-of-theart quantum well and quantum dot heterostructures, and 2D electron gas heterostructures.  相似文献   

3.
半导体材料的华丽家族—氮化镓基材料简介   总被引:4,自引:1,他引:3  
孙殿照 《物理》2001,30(7):413-419
GaN基氮化物材料已成功地用于制备蓝,绿,紫外光发光器件,日光盲紫外探测器以及高温,大功率微波电子器件,由于该材料具有大的禁带宽度,高的压电和热电系数,它们还有很强的其他应用潜力,诸如做非挥发存储器以及利用压电和热效应的电子器件等,在20世纪80年代末和90年代初,在GaN基氮化物材料的生长工艺上的突破引发了90年代GaN基器件,特别是光电子和高温,大功率微波器件方面的迅猛发展,文章评述了GaN基氮化物的材料特性,生长技术和相关器件应用。  相似文献   

4.
用四种不同光源作为激发光源,研究了蓝宝石衬底金属有机物汽相外延方法生长的氮化镓薄膜的光致发光特性。结果发现用连续光作为激发光源时,光致发光谱中除出现365 nm的带边发射峰外,同时观察到中心波长位于约550 nm 的较宽黄带发光;而用脉冲光作为激发光源时其发光光谱主要是365 nm附近的带边发光峰,未观察到黄带发光。氮化镓薄膜的光致发光特性依赖于所用的激发光源性质。  相似文献   

5.
We investigated micro- and nano-fabrication of wide band-gap semiconductor gallium nitride (GaN) using a femtosecond (fs) laser. Nanoscale craters were successfully formed by wet-chemical-assisted fs-laser ablation, in which the laser beam is focused onto a single-crystal GaN substrate in a hydrochloric acid (HCl) solution. This allows efficient removal of ablation debris produced by chemical reactions during ablation, resulting in high-quality ablation. However, a two-step processing method involving irradiation by a fs-laser beam in air followed by wet etching, distorts the shape of the crater because of residual debris. The threshold fluence for wet-chemical-assisted fs-laser ablation is lower than that for fs-laser ablation in air, which is advantageous for improving fabrication resolution since it reduces thermal effects. We have fabricated craters as small as 510 nm by using a high numerical aperture (NA) objective lens with an NA of 0.73. Furthermore, we have formed three-dimensional hollow microchannels in GaN by fs-laser direct-writing in HCl solution.  相似文献   

6.
氮化物抛物量子阱中类氢杂质态能量   总被引:6,自引:1,他引:5  
采用变分方法研究氮化物抛物量子阱(GaN/AlxGa1-xN)材料中类氢杂质态的能级,给出基态能量、第一激发态能量、结合能和跃迁能量等物理量随抛物量子阱宽度变化的函数关系.研究结果表明,基态能量、第一激发态能量、基态结合能和1s→2p±跃迁能量随着阱宽L的增大而减小,最后接近于GaN中3D值.GaN/Al0.3Ga0.7N抛物量子阱对杂质态的束缚程度比GaAs/Al0.3Ga0.7As抛物量子阱强,因此,在GaN/Al0.3-Ga0.7N抛物量子阱中束缚于杂质中心处的电子比在GaAs/Al0.3Ga0.7As抛物量子阱中束缚于杂质中心处的电子稳定.  相似文献   

7.
We report on the growth by molecular beam epitaxy of AlGaN/GaN high electron mobility transistors (HEMTs) on Si(111)/ SiO2/polySiC substrates. The structural, optical, and electrical properties of these films are studied and compared with those of heterostructures grown on thick Si(111) substrates. Field effect transistors have been realized, and they demonstrate the potentialities of III–V nitrides grown on these advanced substrates.  相似文献   

8.
Abstract

III-V nitrides are large band-gap semiconductors. They are very promising materials for opto-electronic and microelectronic applications.

The present paper deals with a new process for preparing nitrides. Two nitrides, gallium nitride (GaN) and aluminium nitride (AlN), have been synthesiaed through a solvothermal route. This process uses ammonia in supercritical conditions as solvent and metals as source of gallium and aluminium. Moreover, an additive is used to improve the nitridation of the metals.

The resulting microcrystallites of nitrides have been charactensed by X-ray diffraction and the morphology has been observed by scanning Electron Microscopy.  相似文献   

9.
Abstract

A new solvothermal route for the synthesis of nitrides is proposed using liquid NH3 as solvent in supercritical conditions, Such a preparation method was applied to the synthesis of GaN using gallium metal as starting material.

GaN is a wide band-gap semi-conductor (3.4eV). It is a very attractive nitride due to its various applications in micro- and opto-electronics [1,2]. Consequently, many research groups are interested in synthesising GaN. Two methods have been principally developed:

(i) synthesis of thin films by epitaxy [3,4]

(ii) synthesis of bulk GaN by high pressure method [5,6].

The new proposed process leads to fine microcrystallites of GaN with the wurtzite-type structure. The chemical purity can be optimised versus the synthesis mechanism. The size and shape of the crystallites would be influenced by the nature of the nitriding additive and the thermodynamical conditions (pressure and temperature) used for the synthesis.  相似文献   

10.
傅爱兵  郝明瑞  杨耀  沈文忠  刘惠春 《中国物理 B》2013,22(2):26803-026803
We propose an optically pumped nonpolar GaN/AlGaN quantum well (QW) active region design for terahertz (THz) lasing in the wavelength range of 30 μm~ 40 μm and operating at room temperature. The fast longitudinal optical (LO) phonon scattering in GaN/AlGaN QWs is used to depopulate the lower laser state, and more importantly, the large LO phonon energy is utilized to reduce the thermal population of the lasing states at high temperatures. The influences of temperature and pump intensity on gain and electron densities are investigated. Based on our simulations, we predict that with a sufficiently high pump intensity, a room temperature operated THz laser using a nonpolar GaN/AlGaN structure is realizable.  相似文献   

11.
First-principles investigations of the structural, electronic, and magnetic properties of Cr-doped AlN/GaN (0001) heterostructures reveal the possibility of efficient spin injection from a ferromagnetic GaN:Cr electrode through an AlN tunnel barrier. We demonstrate that Cr atoms segregate into the GaN region and that these interfaces retain their half-metallic behavior leading to a complete, i.e., 100%, spin polarization of the conduction electrons. This property makes the wide band-gap nitrides doped with Cr to be excellent candidates for high-efficiency magnetoelectronic devices.  相似文献   

12.
By using a second harmonic of near infrared femtosecond (fs) laser (λ=387 nm, 150 fs) with high NA objective lens, fabrication resolution has been greatly improved in nano-fabrication of wide band-gap semiconductor gallium nitride (GaN). We have carried out a wet-chemical-assisted fs laser ablation method, in which the laser beam is focused onto a single-crystal GaN substrate immersed in a concentrated hydrochloric (HCl) acid solution. A two-step processing involving irradiation with a fs laser beam in air followed by wet chemical treatment is also performed for comparison. In the wet-chemical-assisted ablation, theoretical diameters of ablation craters are calculated as a function of pulse energy by assuming that the reaction is based on two-photon absorption. In lower energy, the calculated curve is close to the experimental value, while the actual measured diameters in the region of higher energy are larger than calculated values. In the condition of the highest fabrication resolution, we obtained ablation craters smaller than 200 nm at full width at half maximum. We have also demonstrated the fabrication of two-dimensional (2D) periodic nanostructures on surface of a GaN substrate using the second harmonic single fs-laser pulse. Uniform ablation craters with the size as small as 410 nm in diameter are arranged with a periodicity of 1 μm. Such structures are applicable to 2D photonic crystals which improve the light extraction efficiency for blue LEDs in the near future.  相似文献   

13.
GaN thin films were deposited on sapphire (0001) substrates at different nitrogen pressures by pulsed laser deposition (PLD) of GaN target in nitrogen atmosphere. Good single crystal GaN thin films were obtained after annealing at 1000 °C for 15 min in a NH3 atmosphere. An Nd:YAG pulsed laser with a wavelength of 1064 nm was used as the laser source. The influence of nitrogen pressure on the thickness, crystallinity and surface morphology of GaN films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM) and Raman spectroscopy. The results show that at low nitrogen pressure, the surface diffusion of adatoms can be influenced by the collisions between the nitrogen gas molecules and the activated atoms, which can influence the kinetic energy of the activated atoms. However, at high nitrogen pressure, the kinetic energy of adatoms is decided by the annealing temperature. In our experimental conditions, the GaN thin films deposited at 0.75 and 7.5 Pa have a high surface morphology and crystalline quality. PACS 71.55.Eq; 74.62.Fj  相似文献   

14.
The high power GaN-based blue light emitting diode (LED) on an 80-μ-thick GaN template is proposed and even realized by several technical methods like metal organic chemical vapor deposition (MOCVD), hydride vapor-phase epitaxial (HVPE), and laser lift-off (LLO). Its advantages are demonstrated from material quality and chip processing. It is investigated by high resolution X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), Rutherford back-scattering (RBS), photoluminescence, current-voltage and light output-current measurements. The width of (0002) reflection in XRD rocking curve, which reaches 173" for the thick GaN template LED, is less than that for the conventional one, which reaches 258". The HRTEM images show that the multiple quantum wells (MQWs) in 80-μm-thick GaN template LED have a generally higher crystal quality. The light output at 350 mA from the thick GaN template LED is doubled compared to traditional LEDs and the forward bias is also substantially reduced. The high performance of 80-μm-thick GaN template LED depends on the high crystal quality. However, although the intensity of MQWs emission in PL spectra is doubled, both the wavelength and the width of the emission from thick GaN template LED are increased. This is due to the strain relaxation on the surface of 80-μm-thick GaN template, which changes the strain in InGaN QWs and leads to InGaN phase separation.  相似文献   

15.
Abstract

This paper reviews high pressure investigations of the physical properties of group III nitrides. After presenting the most important results of high pressure research in this field, we focus on the problem of donors and acceptors in GaN and AlGaN with the special emphasis on the highly localized electronic states. Oxygen and silicon donors and their resonant localized states are discussed in detail. Finally the anomaly of the pressure coefficient of the energy gap of InGaN, will be considered in the relation to the peculiarities of these mixed crystals band structure.  相似文献   

16.
三元系和四元系GaN基量子阱结构的显微结构   总被引:1,自引:1,他引:0       下载免费PDF全文
GaN基量子阱是光电子器件如发光二极管、激光二极管的核心结构。实验表明,采用InGaN/GaN三元和AlInGaN/GaN四元两种不同量子阱结构的激光二极管的发光性质和发光效率有明显差别,研究了这两种不同量子阱结构的显微特征。利用原子力显微镜表征了样品的(001)面;通过高分辨X射线衍射对两种量子阱结构的(002)面作ω/2θ扫描测得其卫星峰并分析了两种不同量子阱结构的界面质量;利用X射线衍射对InGaN/GaN和AlInGaN/GaN这两种量子阱的(002)、(101)、(102)、(103)、(104)、(105)和(201)面做ω扫描,进而得到其摇摆曲线。最后利用PL谱研究了它们的光学性能。通过这些显微结构的分析和研究,揭示了InGaN/GaN三元和AlInGaN/GaN四元两种不同量子阱结构宏观性质不同的结构因素。  相似文献   

17.
By comparing experimental and theoretical radiative recombination spectra, we have determined the values of the square of the matrix element for interband optical transitions |M|2 in epitaxial GaN at different temperatures T. The data obtained were used to analyze the mechanism for the temperature dependence of the lasing threshold for a GaN laser. In the experiments, we used epitaxial layers of GaN with a wurtzite crystal structure, grown on Al2O3 (0001) substrates and excited by a focused beam from a nitrogen laser. We have shown that the spontaneous emission spectra near the lasing threshold of a GaN laser are consistent with the model of optical interband transitions not obeying a selection rule for the electron wave vector. As we have established, the parameter |M|2 practically does not vary for T = 300–470 K: 5.4·10−73 kg2·m5/sec2. Further increase in the temperature leads to an exponential fall-off in |M|2 down to 3.4·10−73 kg2·m5/sec2 at T ≈ 520 K. Such behavior of |M|2 as a function of temperature correlates with the sudden increase in the nonradiative recombination rate at T > 470 K, and may be connected with a change in the recombination mechanisms in the active layer of the GaN laser in the high temperature region. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 6, pp. 790–794, November–December, 2007.  相似文献   

18.
氮化蓝宝石衬底上GaN薄膜的微结构与光学性质   总被引:1,自引:0,他引:1  
用透射电子显微镜(TEM),X射线衍射(XRD)和光荧光谱(PL)等测量手段研究了GaN薄膜的微结构和光学性质。样品是用光辐射加热MOCVD在蓝宝石衬底上制备的。随着衬底氮化时间的增加,扩展缺陷的密度显著增加。在位错密度增加一个数量级时,XRD摇摆曲线半宽度(FWHM)由11″增加到15″,PL谱的黄光发射从几乎可忽略增加到带边发射强度的100倍。结合生长条件,我们对黄光与微结构的关系作了讨论。  相似文献   

19.
我们利用光荧光(PL)以及时间分辨光谱(TRPL)研究了用MBE生长在GaAs衬底上的GaNAs/GaAs量子阱的激子局域化以及退局域化。研究发现,在低温下用连续光(CW)激发,由于GaNAs中势振荡所产生的局域激子发光是所测量到光谱的主要发光来源。然而在脉冲激发下,情况完全不同。在高载流子密度激发或者高温下GaNAs/GaAs量子阱中例外,一个高能端的PL峰成为了主要的发光来源。通过研究,我们将这个新的发光峰指认为量子阱中非局域激子复合的PL峰。这个发光峰在温度和激发强度的变化过程中与局域激子相互竞争。我们相信这一过程也是许多文献所报道的在InGaN和AlGaN等氮化物中经常观测到的发光峰位随温度“S”形变化的主要根源。  相似文献   

20.
人们已提出用BAlGaN四元系材料制备紫外光谱区的光发射器件.GaN和AlN二元系是这种四元材料在器件应用中的基础材料.6H-SiC衬底在氮化物生长中因其晶格失配小是一大优势,而且SiC衬底的热膨胀系数也和AlN的很接近.然而,对于AlN外延层来说,需要控制其中的残余应力,因为在SiC衬底上直接生长的AlN外延层中存在着因晶格失配所产生的压缩应力.另一方面,在SiC衬底上直接生长的GaN外延层中存在着拉伸应力.这种拉伸应力起源于GaN比衬底有着更大的热膨胀系数.本文讨论了在6H-SiC衬底上生长的氮化物外延层中残余应力的类型、数量及控制.为此目的,提出了在6H-SiC衬底上,无论是生长AlN,还是生长GaN,都可以采用(GaN/AlN)多层缓冲层的办法,作为控制残余应力的有效方法.我们还讨论了AlN和GaN外延层的结晶质量和残余应力间的关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号