首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Synthesis and Structure of N,N,N?,N?‐Tetraisobutyl‐N′,N″‐isophthaloylbis(thiourea) and Dimethanol‐bis(N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thioureato))dicobalt(II) The synthesis and the crystal structure of the ligand N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thiourea) and its CoII‐complex are reported. The ligand co‐ordinates quadridentately forming a di‐bischelate. The donor atoms O and S are arranged in cis‐position around the central CoII ions. In addition the co‐ordination geometry is determined by methanol molecules resulting in the co‐ordination number five. The complex crystallizes in the space group P1 (Z = 1) with two additional methanol molecules per formula unit. The free ligand crystallizes in the space group P1 (Z = 2) with one methanol molecule per formula unit. It shows the typical keto form of N‐acylthioureas with a protonated central N atom. The structures of both acylthiourea fragments come close to E,Z′‐configurations.  相似文献   

4.
Crystal and Molecular Structure of N,N′-o-Phenylen-bis-(N″,N″-diethyl-N?-benzimidoyl-thioureato)nickel(II) The structure of the title compound has been determined by an X-ray structure analysis. The compound crystallizes in the monoclinic space group C2/c with a = 38.896, b = 14.326, c = 11.121 Å, β = 102.33° and Z = 8. The solution of the structure was performed by Patterson methods. The final R value was R = 0.053 for 2260 observed reflections. The coordination geometry is nearly planar. The ligator atoms show as a necessity a cis arrangement. The chelate rings deviate from planarity. The phenyl rings and the phenylene fragment are significantly twisted in respect to the chelate rings.  相似文献   

5.
6.
7.
N, N′, N″- Trimethyl-N″-Methyl-Carbamoylguanidinium Chloride The title compound is formed in small amounts by the chlorination of N, N′-dimethylurea with phosgene as a consecutive product, which crystallizes in the triclinic space group P1 with two formula units per cell. The cross-linkage of these two molecules with relative short N? H…?Cl…?H? N- bridges forming large, 16- membered ring systems is remarkable. The structure was refined to an R-value of 0.03.  相似文献   

8.
9.
10.
11.
The three ligands H4dota, H4teta, and H4heta give binuclear complexes with Cu2+ and Ni2+, the spectral properties of which have been studied. The structures of Cu2(dota)·5H2O and Cu2(teta)·6H2O have been established by X-ray diffraction analysis.  相似文献   

12.
13.
Synthesis, Structure, and some Reactions of N-(N′,N′,N″,N″-tetramethyl)guanidinyl-substituted Phosphoryl Compounds The tetramethylguanidinyl-substituted phosphoryl compounds 1 – 10 were prepared in the reaction of the appropriate chlorophosphoryl compounds with either N′,N′,N″,N″-tetramethylguanidine (HTMG) or N-trimethylsilyl-(N′,N′,N″,N″-tetramethyl)guanidine (TMSTMG). With methyl iodide 1 reacted with N-alkylation to give the ammonium salt 11. 1 reacted with BF3 · Et2O at both imino nitrogen atoms with formation of the bis-BF3-adduct 12 . The X-ray structure determination of phenylphosphonic acid-bis(N′,N′,N″,N″-tetramethylguanidinide) 3 shows shortened PN-bonds and widened PNC-angles, consistent with the partial double bond character of the PN-bond.  相似文献   

14.
Chelate Formation of N-Tris(2-aminoethyl)amine-N′,N′,N″,N″,N?,N?-hexaacetic Acid (H6TTAHA) and N-(Pyrid-2-yl-methyl)ethylenediamine-N,N′,N′-triacetic Acid (H3PEDTA) with Gadolinium(III) – Syntheses, Stability Constants, and NMR-Relaxivities The chelate formation of N-tris(2-aminoethyl)amine-N′,N′,N″,N″,N?,N?-hexaacetic acid (H6TTAHA) and N-(pyrid-2-yl-methyl)ethylenediamine-N,N′,N′-triacetic acid (H3PEDTA) with gadolinium(III) has been studied potentiometrically in aqueous solution at 25°C and μ = 0.1 (KCl). [Gd(TTAHA)]3?: 1gβM/ML = 19.0; {H[Gd(TTAHA)]}2?: 1gKH/MHL = 8.30; [Gd(PEDTA)]: 1gβM/ML = 15.56. Both 1 : 1 gadolinium(III) complexes were isolated as Na2H[Gd(C18H24N4O12)] · 3.5 H2O and [Gd(C14H16N3O6)] · 3 H2O, respectively. Their 1H-NMR relaxivities [1 · mmol?1 · s?1] ({H[Gd(TTAHA)]}2?: 9.5; [Gd(PEDTA)]: 8.8) offer promising applications for 1H-NMR imaging.  相似文献   

15.
16.
17.
Synthesis, Structures, NMR and EPR Investigations of Binuclear Bis(N,N,N‴,N‴‐tetraisobutyl‐N′,N″‐isophthaloylbis(selenoureato)) Complexes of NiII and CuII The synthesis of binuclear CuII and NiII complexes of the quadridentate ligand N,N,N‴,N‴‐tetraisobutyl‐N′,N″‐isophthaloylbis(selenourea) and their crystal structures are reported. The complexes crystallize monoclinic, P21/c (Z = 2). In the EPR spectra of the binuclear CuII complex exchange‐coupled CuII‐CuII pairs were observed. In addition the signals of a mononuclear CuII species are observed what will be explained with the assumption of an equilibrium between the binuclear CuII‐complex (CuII‐CuII pairs) and oligomeric complexes with “isolated” CuII ions. Detailed 13C and 77Se NMR investigations on the ligand and the NiII complex allow an exact assignment of all signals of the heteroatoms.  相似文献   

18.
Synthesis, Structure and EPR Investigations of binuclear Bis(N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thioureato)) Complexes of CuII, NiII, ZnII, CdII and PdII The synthesis of binuclear CuII‐, NiII‐, ZnII‐, CdII‐ and PdII‐complexes of the quadridentate ligand N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thiourea) and the crystal structures of the CuII‐ and NiII‐complexes are reported. The CuII‐complex crystallizes in two polymorphic modifications: triclinic, (Z = 1) and monoclinic, P21/c (Z = 2). The NiII‐complex was found to be isostructural with the triclinic modification of the copper complex. The also prepared PdII‐, ZnII‐ and CdII‐complexes could not be characterized by X‐ray analysis. However, EPR studies of diamagnetically diluted CuII/PdII‐ and CuII/ZnII‐powders show axially‐symmetric g and A Cu tensors suggesting a nearly planar co‐ordination within the binuclear host complexes. Diamagnetically diluted CuII/CdII powder samples could not be prepared. In the EPR spectra of the pure binuclear CuII‐complex exchange‐coupled CuII‐CuII pairs were observed. According to the large CuII‐CuII distance of about 7,50Å a small fine structure parameter D = 26·10?4 cm?1 is observed; T‐dependent EPR measurements down to 5 K reveal small antiferromagnetic interactions for the CuII‐CuII dimer. Besides of the dimer in the EPR spectra the signals of a mononuclear CuII species are observed whose concentration is T‐dependent. This observation can be explained assuming an equilibrium between the binuclear CuII‐complex (CuII‐CuII pairs) and oligomeric complexes with “isolated” CuII ions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号