首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative cationic polymerizabilities of the geometrical isomers of various alkenyl alkyl ethers were studied both in copolymerizations with each other and in their respective copolymerizations with vinyl isobutyl ether as standard. Copolymerizations were carried out in methylene dichloride at ?78°C. with boron trifluoride etherate as catalyst. The cis isomers have been found to be more reactive than the corresponding trans isomers. A primary alkyl substituent on the β-cis position of vinyl ethyl ether enhances the reactivity. Yet the steric effect is noticeable when the substituents are bulky. Compounds substituted with cis-β-isobutyl and with β-dimethyl showed little tendency to homopolymerization. It was proved that the polymer ends derived from cis and from trans monomers are respectively different in character because of the restricted rotation of the end unit around the terminal carbon–carbon bond. The alternation tendency, remarkable in the copolymerization of cis monomers with vinyl ether, was explained in terms of the cis-opening mechanism.  相似文献   

2.
Several 6-methyl-9-carbamoyltetrahydro-4H-pyrido[1,2-α]pyrimidin-4-ones have been prepared using phosgene iminium chloride. These compounds can exist in equilibrium as the cis (3A) imine ? (3B) enamine ? trans (3C) imine. 1H, 13C and 15N NMR prove that the cis- and trans-imine isomers are predominant in the equilibrium. 1H NMR data reveal that the share of the 3B enamine form is negligible at measurable concentrations. The isomeric ratio 3A:3C is time dependent and can be monitored by measuring the CH3? C-6 and (CH3)2N signals. The 13C NMR data show that doublets in the range 42–45 ppm for C-9 are only compatible with the imine forms 3A and 3C. The SCS values of the CH3? C-6 and OCN(CH3)2 groups were calculated and used for identification of the cis and trans isomers. 15N NMR data show that the N-1 chemical shift of the imine is approximately ? 140 ppm for compound 3, whereas that of a fixed enamine is around ? 267.8. This provides additional support for the predominance of the imine tautomers in the equilibrium 3A ? 3B ? 3C. 15N data allow the stereoisomers 3A and 3C to be distinguished.  相似文献   

3.
X‐ray crystal structure analysis of the lithiated allylic α‐sulfonyl carbanions [CH2?CHC(Me)SO2Ph]Li ? diglyme, [cC6H8SO2tBu]Li ? PMDETA and [cC7H10SO2tBu]Li ? PMDETA showed dimeric and monomeric CIPs, having nearly planar anionic C atoms, only O?Li bonds, almost planar allylic units with strong C?C bond length alternation and the s‐trans conformation around C1?C2. They adopt a C1?S conformation, which is similar to the one generally found for alkyl and aryl substituted α‐sulfonyl carbanions. Cryoscopy of [EtCH?CHC(Et)SO2tBu]Li in THF at 164 K revealed an equilibrium between monomers and dimers in a ratio of 83:17, which is similar to the one found by low temperature NMR spectroscopy. According to NMR spectroscopy the lone‐pair orbital at C1 strongly interacts with the C?C double bond. Low temperature 6Li,1H NOE experiments of [EtCH?CHC(Et)SO2tBu]Li in THF point to an equilibrium between monomeric CIPs having only O?Li bonds and CIPs having both O?Li and C1?Li bonds. Ab initio calculation of [MeCH?CHC(Me)SO2Me]Li ? (Me2O)2 gave three isomeric CIPs having the s‐trans conformation and three isomeric CIPs having the s‐cis conformation around the C1?C2 bond. All s‐trans isomers are more stable than the s‐cis isomers. At all levels of theory the s‐trans isomer having O?Li and C1?Li bonds is the most stable one followed by the isomer which has two O?Li bonds. The allylic unit of the C,O,Li isomer shows strong bond length alternation and the C1 atom is in contrast to the O,Li isomer significantly pyramidalized. According to NBO analysis of the s‐trans and s‐cis isomers, the interaction of the lone pair at C1 with the π* orbital of the CC double bond is energetically much more favorable than that with the “empty” orbitals at the Li atom. The C1?S and C1?C2 conformations are determined by the stereoelectronic effects nC–σSR* interaction and allylic conjugation. 1H DNMR spectroscopy of racemic [EtCH?CHC(Et)SO2tBu]Li, [iPrCH?CHC(iPr)SO2tBu]Li and [EtCH?C(Me)C(Et)SO2tBu]Li in [D8]THF gave estimated barriers of enantiomerization of ΔG=13.2 kcal mol?1 (270 K), 14.2 kcal mol?1 (291 K) and 14.2 kcal mol?1 (295 K), respectively. Deprotonation of sulfone (R)‐EtCH?CHCH(Et)SO2tBu (94 % ee) with nBuLi in THF at ?105 °C occurred with a calculated enantioselectivity of 93 % ee and gave carbanion (M)‐[EtCH?CHC(Et)SO2tBu]Li, the deuteration and alkylation of which with CF3CO2D and MeOCH2I, respectively, proceeded with high enantioselectivities. Time‐dependent deuteration of the enantioenriched carbanion (M)‐[EtCH?CHC(Et)SO2tBu]Li in THF gave a racemization barrier of ΔG=12.5 kcal mol?1 (168 K), which translates to a calculated half‐time of racemization of t1/2=12 min at ?105 °C.  相似文献   

4.
The nuclear magnetic resonance parameters of 1,3 alkoxy-butadienes are strongly dependent on the cis or trans configuration of the ethylenic systems. A discussion of the different types of coupling constants and of the additivity of substituent effects on the chemical shift is proposed. The results are applied to the identification of isomers and to the study of the electronic and stereochemical structure of each configuration. The conformational equilibrium about the C? C and C? O bonds is discussed with special reference to the aromatic solvent and temperature effects.  相似文献   

5.
Rotational isomeric-state theory has been applied to investigate chain configurations of a polyester prepared from 4′,5-(1,1,3-trimethyl-3-phenylindan) dicarboxylic acid and 2,2-bis(4′-hydroxyphenyl) propane (POLA polyester). Independent conformations for each repeat monomer unit of the chain have been assumed in the calculations of the unperturbed dimensions. Rotations about the oxygen-phenylene-carbon (O? ?? C) bonds are considered to be free with twofold symmetric potentials. The trans and cis conformations of the carbonyl-phenylene-carbon (O?C? ?? C) and the indan-carbonyl residues are assumed to have equal probability. Two rotational states, trans and cis, are assigned to the ester C? O bonds. Calculation of the reduced unperturbed dimensions (〈r02〉/M) with conformations thus assigned for the bonds in the repeat unit, and comparison with experiment (0.72 ± 0.02 Å2/g) indicate that the conformation in the ester C? O bonds is predominantly trans. An equation for the conformational potential as a function of rotational angle about the ester C? O bond has been formulated using data on potential barriers for low molecular weight compounds. This equation, yielding a potential difference between the cis the trans isomers of 2.5–3.0 kcal/mole, is in good agreement with the prediction made from the calculation of the unperturbed dimensions where a cis/trans ratio of 0.01 for the ester C? O bonds was obtained.  相似文献   

6.
The hydrogen bonding interactions between ureas or thioureas and different nitro-compounds were studied using the MP2 method. After comparing four possible conformations, the most stable one was found, which has the typical hydrogen bonding feature of red-shift effect. Based on it, the substituent effects on both nitro-compounds and (thio) urea were researched. The results indicated that electron-withdrawing groups on ureas or thioureas and electron-donating groups on nitro-compounds can both facilitate the hydrogen bonding formation. The NBO analysis further disclosed the essence of the hydrogen bonding interaction. We also studied the cistrans isomerization of the complexes of (thio) urea with nitroalkenes, which revealed that, for hydrogen-bonding complexes, it is necessary to take both cis and trans isomers into consideration, especially for nitroalkenes with little steric effect substituents.  相似文献   

7.
The cis- and trans-annulated isomers of 8-(N-pyrrolidyl)bicyclo[4.3.0]nona-3,7-diene show different propensities for the retro Diels–Alder fragmentation following electron impact ionization. Molecular ions of the cis-annulated isomer decompose predominantly via the retro Diels–Alder reaction to give [C9H13N] +· fragments of the appearance energy (AE)=8.45±0.05eV and critical energy Ec=133±8kJ mol?1. The trans-annulated isomer gives abundant [M–H]+ (AE=9.34±0.08eV) and [M–C6H6]+· fragments, in addition to [C9H13N]+· ions of AE=8.98±0.05eV and Ec=181±8kJ mol?1. The ionization energies (IE) were determined as IEcis=7.07±0.05 eV and IEtrans=7.10±0.06eV. The stereochemical information is much less pronounced in unimolecular decompositions of long-lived (metastable) molecular ions which show very similar fragmentation patterns for both geometrical isomers. Nevertheless, the isomers exhibit different kinetic energy release values in the retro Diels–Alder fragmentation; T0.5=3.8±0.3 and 4.8±0.2 kJ mol?1 for the cis and trans isomer respectively. Topological molecular orbital calculations indicate that the retro Diels–Alder reaction prefers a two-step path, with a subsequent cleavage of the C(5)? C(6) and C(1)? C(2) bonds. The open-ring distonic intermediate represents the absolute minimum on the reaction energy hypersurface. The cleavage of the C(1)? C(2) bond is the rate-determining step in the decomposition of the cis isomer, with the critical energy calculated as 137 kJ mol?1. The cleavage of the C(5)? C(6) bond becomes the rate-determining step in the trans-annulated isomer because of stereoelectronic control. The difference in the energy barriers to this cleavage in the isomers (ΔE=95k Jmol?1) provides a quantitative estimate of the magnitude of the stereoelectronic effect in cation radicals.  相似文献   

8.
The molecular characteristics which determine the melting points of high polymer crystals are considered, and it is shown that the properties of monomeric crystals often throw light on those of the polymers. The principal factors controlling melting points appear to be molar cohesion energy (of the whole molecule for monomers, or per chain unit for polymers), molecular flexibility (due to rotation round bonds), and molecular shape effects. Figures for the cohesion energy increments of a number of chain units and substituent groups are given, and melting points of polymer series are correlated with cohesion energy per chain unit. The flexibility factor is less easy to assess; barriers to rotation in appropriate monomer molecules are relevant, but available data are very rough. The approach therefore is mainly by empirical and comparative methods. When plotted against cohesion energy per chain unit, the melting points of various series of aromatic polyesters and polyurethans fall within the same band, while those of the polyamides lie on the whole higher and those of the aliphatic polyesters, polyethers, polythioethers and polydisulfides much lower. The differences are attributed to difference of molecular flexibility arising from the presence of easily rotating O?C, S?C and S?S bonds. The low melting points of rubber and other unsaturated polymers are attributed to the fact (which can now be regarded as definitely established by independent evidence) that rotation round single bonds which are adjacent to double C? C bonds is easier than in saturated chains. Easily rotating bonds which are inclined to each other, as in cis isomers, confer greater chain flexibility than the parallel bonds in trans isomers, and thus lead to lower melting points. The marked odd-even effects in saturated molecules which run through the whole of organic chemistry (the even members always melting higher than the odd) are attributed to similar effects arising from the fact that the end bonds of an odd CH2 sequence are inclined to each other while those at the ends of an even sequence are parallel.  相似文献   

9.
Quantum chemical calculations of reaction mechanisms for the formal [2+2] addition of ethylene and acetylene to the amido‐substituted digermyne and distannyne Ph2N?EE?NPh2 (E=Ge, Sn) have been carried out by using density functional theory at the BP86/def2‐TZVPP level. The nature and bonding situations were studied with the NBO method and with the charge and energy decomposition analysis EDA‐NOCV. The addition of ethylene to Ph2N?EE?NPh2 takes place through an initial [2+1] addition to one metal atom and consecutive rearrangement to four‐membered cyclic species, which feature a weak E?E bond. Rotation about the C?C bond with concomitant rupture of the E?E bond leads to the 1,2‐disubstituted ethanes, which have terminal E(NPh2) groups. The overall reaction Ph2N?EE?NPh2+C2H4→(Ph2N)E?C2H4?E(NPh2) has very low activation barriers and is slightly exergonic for E=Ge but slightly endergonic for E=Sn. The analysis of the electronic structure shows that there is charge donation of nearly one electron to the ethylene moiety already in the first part of the reaction. The energy partitioning analysis suggests that the HOMO(Ph2N?EE?NPh2)→LUMO(C2H4) interaction has a similar strength as the HOMO(C2H4)→LUMO(Ph2N?EE?NPh2) interaction. The [2+2] addition of acetylene to Ph2N?EE?NPh2 also takes place through an initial [2+1] approach, which eventually leads to 1,2‐disubstituted olefins (Ph2N)E?C2H2?E(NPh2). The formation of the energetically lowest lying conformations of cis‐(Ph2N)E?C2H2?E(NPh2), which occurs with very low activation barriers, is clearly exergonic for the germanium and the tin compound. The trans‐coordinated isomers of (Ph2N)E?C2H2?E(NPh2) are slightly lower in energy than the cis form but they are separated by a substantial energy barrier for the rotation about the C?C bond. The energy decomposition analysis indicates that the initial reaction takes place under formation of electron‐sharing bonds between triplet fragments rather than HOMO–LUMO interactions.  相似文献   

10.
The polypeptide carbobenzoxy-glycyl-L -prolyl-L -leucyl-L -alanyl-L -proline (0.2 M in DMSO-d6) was investigated using 13C, 1H and 15N NMR in natural abundance at 4.7 tesla. The existence of cistrans-Gly-Pro and -Ala-Pro bonds permits up to four isomers, and all four were observed (in a 60:30:7:3 ratio). 13C shifts of the proline β-CH2 resonances are consistent only with the 60% form being transtrans. The 30% form is either transcis or cistrans (order as above) and was tentatively assigned as cis-trans on the basis of relaxation behavior. Refocused INEPT studies aided the 13C assignments. The 15N data were obtained using both NOE and INEPT excitation, with signals evident for the three major isomers. The spectra were analysed by starting from the 13C data, which were assigned based on known regularities in peptide spectra. A 13C? 1H heteronuclear two-dimensional chemical shift correlation experiment allowed direct assignment of proton shifts for major and minor isomers. The NH proton shifts were assigned by running a homonuclear two-dimensional chemical shift correlation experiment and noting the correlation with the previously assigned α-CH protons. The 15N resonances were then assigned from a 15N? 1H heteronuclear two-dimensional chemical shift correlation experiment, relating the 15N signals directly to the NH proton resonances. Isomer interconversion between the two major isomers was demonstrated by performing a magnetization transfer homonuclear 2D experiment. Off-diagonal intensity was noted relating the major and minor isomer alanine NH proton, as well as for the major and minor isomer leucine NH protons.  相似文献   

11.
The configurational isomers of 1,4-bis[2-(3,4,5-trimethoxyphenyl)ethenyl]benzene have been investigated by ab initio and MOPAC-AM1 semiempirical methods. The calculations were guided by and compared with single crystal X-ray results of the trans, trans-isomer (taken from the literature) and of the cis,cis-isomer (reported here). Using 4-21G-based ab initio calculations, free state geometries, deviations from coplanarity, and barriers to rotation of the central and peripheral rings were evaluated. Such barriers were also enumerated for the solid state of the cis,cis- and trans,trans-isomers. A single-molecule cluster surrounded by point charges sufficed to rationalize observed solid state properties in the trans,trans-isomer, including the quasi-free rotation of the central ring. A multimolecule cluster, however, was required to rationalize the restricted rotation of the rings in the cis,cis-isomer. MOPAC-AM1 methods were used to calculate geometries and energies of rotameric forms on the singlet photoisomerization path cis,ciscis,transtrans,trans. Finally, UV absorption wavelengths and oscillator strengths were calculated and the electronic structure of the states discussed. © 1996 by John Wiley & Sons, Inc.  相似文献   

12.
The 13C chemical shifts of the unsaturated carbons were measured in 31 cis and trans pairs of β-substituted enones R1? C(1)O? C(2)H?C(3)H? R2. In these polarized ethylenes the chemical shifts of the olefinic carbons are simply related by the equation δct+A. The steric and electronic effects introduced by the R1 and R2 substituents influence the chemical shifts of C-2 and C-3 in both isomers. It is shown that the sign and magnitude of the intercept A mainly reflect the π-charge electronic density changes which arise in the cis isomer and are transmitted via the π-framework. The effect of the steric interaction on the chemical shift of C-3 in the cis isomers is postulated to be related to the symmetry of the substituents. Therefore, the differential shielding of C-3 is indicative of the conformational structure of the cis molecule.  相似文献   

13.
Restricted rotation around the C? C bond in the O?C? C?C? N system is responsible of the s-cis and s-trans conformers as shown by the NMR spectra of vinylogous amides (CH3)2N? CH?CH? CO? R. Substituent effect (nature of R) is discussed in terms of conformational equilibrium. Theoretical line shapes have been computed and fit reasonably well with the experimental spectra; activation functions were also derived.  相似文献   

14.
The elimination of CH3COOH from the molecular ions of trans-3- and 4-arylcyclohexyl acetates takes place to a greater extent than in the cis isomers. Deuterium labelling shows that the elimination involves mainly the benzylic hydrogen in the trans-acetates, but not in the cis isomers. This behaviour is similar qualitatively to that of the corresponding alcohols and methyl ethers, but entirely different from that of t-butylcyclohexyl acetates, which do not exhibit any stereospecificity. Substituent effects on the elimination for both cis and trans isomers are discussed.  相似文献   

15.
The variation in the one–bond couplings 1J(CH) in vinyl derivatives with substituent has been examined. For the geminal proton 1J correlates very badly with substituent electronegativity but extremely well with σI, if conjugating substituents are excluded. In the case of halogen substituents the marked stereospecificity of 1J(CH) for the cis and trans protons can be rationalised in terms of an intrinsic dependence of πCH on the dihedral angle between the coupling atoms and the perturbing substituent, with an additional positive increment to the cis coupling due to direct interaction of the substituent non-bonding electrons or to orbital circulation of the substituent electrons. The intrinsic specificity of β-substituent effects on 1J(CH) is also found in analogous compounds containing C?N and C?O bonds.  相似文献   

16.
Ab initio SCF molecular orbital calculations have been performed to ascertain the conformational preferences of protonated, neutral, and deprotonated amidine [HC(?NH)NH2], using the 3-21G split valence basis set. The states of eight stable species, eight transition states, and four higher-order saddle points have been determined by complete geometry optimization utilizing analytic energy gradient techniques. Protonation at the amidine ?NH is preferred over the –NH2 site by 37.1 kcal/mol. Neutral amidine has rotational barriers of 9.6 and 11.7 kcal/mol for the HN?CN cis and trans isomers, respectively, while all the stable HC(NH2)2+ and HC(NH)2? species possess torsional barriers larger than 23 kcal/mol. There is, however, essentially free C—N single-bond rotation in HC(?NH)NH3+, the calculated barriers being 0.7 and 1.8 kcal/mol for the cis and trans HN?CN isomers, respectively.  相似文献   

17.
The molecular structure and conformational properties of structurally related oxo and thio heteroarotinoids have been calculated by employing AM1 molecular orbital and both MM2P and Chem-X “optimize” molecular mechanics methods, and the results have been compared with crystal structure data. For the cis and trans oxo heteroarotinoids, MM2P gives values of the bridge torsion angles ?1 and ?2 in closest agreement with the crystal structure, and all three computational methods yield values of ?1 and ?2 within about 10° of that found in the crystal structures. All three computational methods locate a minimum-energy conformation for the trans isomer corresponding to the two bridged aryl rings being mutually perpendicular, in agreement with the crystal structure and similar to that found for the structurally analogous trans-stilbene. The calculated heteroring geometries also reproduce the twist-sofa conformation observed for the crystal structure. Calculated conformational energies versus ?1 and ?2 indicate broad energy wells about the minimum-energy conformation with barriers to rotation at the planar and perpendicular conformations, and with higher barriers found for the more sterically congested cis isomer. The corresponding cis and trans thio heteroarotinoids exhibit conformational properties similar to their oxo analogues. Both AM1 and MM2P fare poorly in reproducing the crystal structure values of the sulfur-containing bond lengths and bond angles. The C-S bonds found in these thio heteroarotinoids may possess more double-bond character than accounted for in the calculations. Also, the results suggest that the MM2P sulfur-related force-field parameters adopted for these calculations may require further refinement.  相似文献   

18.
First‐principles molecular dynamics coupled with metadynamics have been used to gain a deeper insight into the reaction mechanism of the Wacker process by determining the nature of the active species. An explicit and dynamic representation of the aqueous solvent, which was essential for modeling this reaction, was efficiently included into the simulations. Prompted by our earlier results, which showed that the configuration of the catalytically active species [PdCl2(H2O)(C2H4)] was crucial in the subsequent steps of the Wacker process, herein we focused on the preceding equilibria that led to the formation of both the cis and trans isomers. Starting from the initial catalyst, [PdCl4]2?, the free‐energy barriers for the forward and backward reactions were calculated. These results confirmed the relevance of the trans intermediate in the reaction mechanism, whilst conversely, they showed that the cis configuration played no role in it. This sole participation of the trans intermediate has some very important implications; besides the mechanistic interpretation of the initial steps in the Wacker reaction mechanism, the analysis of these equilibria provides additional information about the chemical nature of these ligand‐substitution processes.  相似文献   

19.
The isomerization and optical properties of the cis and trans isomers of tetraphenylethene (TPE) derivatives with aggregation‐induced emission (AIEgens) have been sparsely explored. We have now observed the tautomerization‐induced isomerization of a hydroxy‐substituted derivative, TPETH‐OH, under acidic but not under basic conditions. Replacing the proton of the hydroxy group in TPETH‐OH with an alkyl group leads to the formation of TPETH‐MAL, for which the pure cis and trans isomers were obtained and characterized by HPLC analysis and NMR spectroscopy. Importantly, cis‐TPETH‐MAL emits yellow fluorescence in DMSO at ?20 °C whereas trans‐TPETH‐MAL shows red fluorescence under the same conditions. Moreover, the geometry of cis‐ and trans‐TPETH‐MAL remains unchanged when they undergo thiol–ene reactions to form cis‐ and trans‐TPETH‐cRGD, respectively. Collectively, our findings improve our fundamental understanding of the cis/trans isomerization and photophysical properties of TPE derivatives, which will guide further AIEgen design for various applications.  相似文献   

20.
In the 1H-NMR spectrum of polychloroprene dissolved in C6D6, the ?CH proton signal was separated into two triplet peaks. These triplet signals were assigned to the ?CH proton in the trans-1,4 and cis-1,4 isomers by measurement of 1H-NMR spectra of 3-chloro-1-butene and a mixture of trans- and cis-2-chloro-2-butene as model compounds for the 1,2, trans-1,4 and cis-1,4 isomers. In 1H-NMR spectra (220 Mcps) of polychloroprene dissolved in C6D6, two triplet signals were separated completely from which the relative concentrations of trans-1,4 and cis-1,4 isomers could be obtained quantitatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号