首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Many interesting free-surface flow problems involve a varying bottom. Examples of such flows include ocean waves propagating over topography, the breaking of waves on a beach, and the free surface of a uniform flow over a localized bump. We present here a formulation for such flows that is general and, from the outset, demonstrates the wave character of the free-surface evolution. The evolution of the free surface is governed by a system of equations consisting of a nonlinear wave-like partial differential equation coupled to a time-independent linear integral equation. We assume that the free-surface deformation is weakly nonlinear, but make no a priori assumption about the scale or amplitude of the topography. We also extend the formulation to include the effect of mean flows and surface tension. We show how this formulation gives some of the well-known limits for such problems once assumptions about the amplitude and scale of the topography are made.  相似文献   

2.
A model equation somewhat more general than Burger's equation has been employed by Herron [1] to gain insight into the stability characteristics of parallel shear flows. This equation, namely, ut + uuy = uxx + uyy, has an exact solution U(y) = ?2tanh y. It was shown in [1] that this solution is linearly stable, and more recently, Galdi and Herron [3] have proved conditional stability to finite perturbations of sufficiently small initial amplitude using energy methods. The present study utilizes multiple-scaling methods to derive a nonlinear evolution equation for a long-wave perturbation whose amplitude varies slowly in space and time. A transformation to the heat-conduction equation has been found which enables this amplitude equation to be solved exactly. Although all disturbances ultimately decay due to diffusion, it is found that subcritical instability is possible in that realistic disturbances of finite initial amplitude can amplify substantially before finally decaying. This behavior is probably typical of perturbations to shear flows of practical interest, and the results illustrate deficiencies of the energy method.  相似文献   

3.
The least-squares spectral element method has been applied to the one-dimensional inviscid Burgers equation which allows for discontinuous solutions. In order to achieve high order accuracy both in space and in time a space–time formulation has been applied. The Burgers equation has been discretized in three different ways: a non-conservative formulation, a conservative system with two variables and two equations: one first order linear PDE and one linearized algebraic equation, and finally a variant on this conservative formulation applied to a direct minimization with a QR-decomposition at elemental level. For all three formulations an h/p-convergence study has been performed and the results are discussed in this paper.  相似文献   

4.
This paper addresses the solution of parabolic evolution equations simultaneously in space and time as may be of interest in, for example, optimal control problems constrained by such equations. As a model problem, we consider the heat equation posed on the unit cube in Euclidean space of moderately high dimension. An a priori stable minimal residual Petrov–Galerkin variational formulation of the heat equation in space–time results in a generalized least squares problem. This formulation admits a unique, quasi‐optimal solution in the natural space–time Hilbert space and serves as a basis for the development of space–time compressive solution algorithms. The solution of the heat equation is obtained by applying the conjugate gradient method to the normal equations of the generalized least squares problem. Starting from stable subspace splittings in space and in time, multilevel space–time preconditioners for the normal equations are derived. In order to reduce the complexity of the full space–time problem, all computations are performed in a compressed or sparse format called the hierarchical Tucker format, supposing that the input data are available in this format. In order to maintain sparsity, compression of the iterates within the hierarchical Tucker format is performed in each conjugate gradient iteration. Its application to vectors in the hierarchical Tucker format is detailed. Finally, numerical results in up to five spatial dimensions based on the recently developed htucker toolbox for MATLAB are presented. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, we introduce a new space‐time spectral collocation method for solving the one‐dimensional sine‐Gordon equation. We apply a spectral collocation method for discretizing spatial derivatives, and then use the spectral collocation method for the time integration of the resulting nonlinear second‐order system of ordinary differential equations (ODE). Our formulation has high‐order accurate in both space and time. Optimal a priori error bounds are derived in the L2‐norm for the semidiscrete formulation. Numerical experiments show that our formulation have exponential rates of convergence in both space and time. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 670–690, 2015  相似文献   

6.
We consider a nonlinear Schrödinger (NLS) equation on a spatially extended periodic quantum graph. With a multiple scaling expansion, an effective amplitude equation can be derived in order to describe slow modulations in time and space of an oscillating wave packet. Using Bloch wave analysis and Gronwall’s inequality, we estimate the distance between the macroscopic approximation which is obtained via the amplitude equation and true solutions of the NLS equation on the periodic quantum graph. Moreover, we prove an approximation result for the amplitude equations which occur at the Dirac points of the system.  相似文献   

7.
In this paper, we propose a new three-level implicit nine point compact cubic spline finite difference formulation of order two in time and four in space directions, based on cubic spline approximation in x-direction and finite difference approximation in t-direction for the numerical solution of one-space dimensional second order non-linear hyperbolic partial differential equations. We describe the mathematical formulation procedure in details and also discuss how our formulation is able to handle wave equation in polar coordinates. The proposed method when applied to a linear hyperbolic equation is also shown to be unconditionally stable. Numerical results are provided to justify the usefulness of the proposed method.  相似文献   

8.
A time-space boundary element formulation is presented for the boundary-value problems with a governing equation expressed in terms of a certain type of linear operator. The boundary as well as the time domain are divided into a finite series of time-space elements, and the interpolation functions in time and space are introduced in order to construct a final discretized equation for the assembled system. The solving scheme is discussed, and the relation to the practical engineering problems is shown.  相似文献   

9.
We prove the existence of periodic solutions and solitons in the nonlinear Schrödinger equation with a nonlocal integral term of convolution type. By separating phase and amplitude, the problem is reduced to an integro-differential formulation that can be written as a fixed point problem for a suitable operator on a Banach space. Then a fixed point theorem due to Krasnoselskii can be applied.  相似文献   

10.
This paper concerns the linear and nonlinear instability of Kelvin–Helmholtz flows in magnetic fluids under external driving. The fluids are subjected to an oblique magnetic field. With the use of the method of multiple scaling, a generalized derivation of the amplitude equation is obtained in marginally unstable regions of parameter space. A Melnikov function is formulated for such an instability and it is shown that there exist transverse homoclinic orbits leading to chaos.  相似文献   

11.
We establish well-posedness of a class of first order Hamilton–Jacobi equation in geodesic metric spaces. The result is then applied to solve a Hamilton–Jacobi equation in the Wasserstein space of probability measures, which arises from the variational formulation of a compressible Euler equation.  相似文献   

12.
The pressure formulation of the porous medium equation has been commonly used in theoretical studies due to its much better regularities than the original formulation. The goal here is to study its use in the adaptive moving mesh finite element solution. The free boundary is traced explicitly through Darcy's law. The method is shown numerically second‐order in space and first‐order in time in the pressure variable. Moreover, the convergence order of the error in the location of the free boundary is almost second‐order in the maximum norm. However, numerical results also show that the convergence order in the original variable stays between first‐order and second‐order in L1 norm or between 0.5th‐order and first‐order in L2 norm. Nevertheless, the current method can offer some advantages over numerical methods based on the original formulation for situations with large exponents or when a more accurate location of the free boundary is desired.  相似文献   

13.
In the linear inviscid theory of shear flow stability, the eigenvalue problem for a neutral or weakly amplified mode revolves around possible discontinuities in the eigenfunction as the singular critical point is crossed. Extensions of the linear normal mode approach to include nonlinearity and/or wave packets lead to amplitude evolution equations where, again, critical point singularities are an issue because the coefficients of the amplitude equations generally involve singular integrals. In the past, viscosity, nonlinearity, or time dependence has been introduced in a critical layer centered upon the singular point to resolve these integrals. The form of the amplitude evolution equation is greatly influenced by which choice is made. In this paper, a new approach is proposed in which wave packet effects are dominant in the critical layer and it is argued that in many applications this is the appropriate choice. The theory is applied to two-dimensional wave propagation in homogeneous shear flows and also to stratified shear flows. Other generalizations are indicated.  相似文献   

14.
We are concerned with convergence of spectral method for the numerical solution of the initial-boundary value problem associated to the Korteweg-de Vries-Kawahara equation (Kawahara equation, in short), which is a transport equation perturbed by dispersive terms of the 3rd and 5th order. This equation appears in several fluid dynamics problems. It describes the evolution of small but finite amplitude long waves in various problems in fluid dynamics. These equations are discretized in space by the standard Fourier-Galerkin spectral method and in time by the explicit leap-frog scheme. For the resulting fully discrete, conditionally stable scheme we prove an L 2-error bound of spectral accuracy in space and of second-order accuracy in time.  相似文献   

15.
The current paper is devoted to stochastic Burgers equation with driving forcing given by white noise type in time and periodic in space. Motivated by the numerical results of Hairer and Voss, we prove that the Burgers equation is stochastic stable in the sense that statistically steady regimes of fluid flows of stochastic Burgers equation converge to that of determinstic Burgers equation as noise tends to zero.  相似文献   

16.
It is known that the Schrödinger flow on a complex Grassmann manifold is equivalent to the matrix non-linear Schrödinger equation and the Ferapontov flow on a principal Adjoint U(n)-orbit is equivalent to the n-wave equation. In this paper, we give a systematic method to construct integrable geometric curve flows on Adjoint U-orbits from flows in the soliton hierarchy associated to a compact Lie group U. There are natural geometric bi-Hamiltonian structures on the space of curves on Adjoint orbits, and they correspond to the order two and three Hamiltonian structures on soliton equations under our construction. We study the Hamiltonian theory of these geometric curve flows and also give several explicit examples.  相似文献   

17.
Following the method of a group theoretic formulation of rigid body dynamics, we construct an elementary proof that f commuting generators of symmetries of an f degree-of-freedom Hamiltonian system yield integrability of the dynamics in the form of f independent translations in phase space. The integrability of the dynamical system follows directly from the trivial integrability of a particular set of group parameter velocities that are nonintegrable in the absence of symmetry, and does not rely at all upon any assumption of separability of the Hamiltonian-Jacobi partial differential equation. Our method relies upon Hamel's explanation of when one can and cannot choose group parameters as generalized coordinates, and uses the Poisson bracket formulation of mechanics that is familiar to physicists.

We formally extend Euler's theorem on rigid body motions to other transformation groups for Hamiltonian flows in phase space, and also note the analogy between nonholonomic coordinates in classical mechanics and uncertainty principles in quantum mechanics.  相似文献   


18.
An algorithm is presented for numerical simulations of time-dependent low Mach number variable density flows with an arbitrary amount of scalar transport equations and a complex equation of state. The pressure-correction type algorithm is based on a segregated solution formalism. It is conservative and guarantees stable results, regardless of the difference in density between neighboring cells. Furthermore, states are predicted which exactly match the equation of state. In the one-dimensional example, considering non-premixed flames, a simplified flamesheet model is used to describe the combustion of fuel and oxidizer. We demonstrate that the predicted states exactly correspond to the equation of state. We illustrate the accuracy improvement due to higher order formulation and demonstrate grid convergence.  相似文献   

19.
A method for the solution of the Navier–Stokes equation for the prediction of flows inside domains of arbitrary shaped bounds by the use of Cartesian grids with block-refinement in space is presented. In order to avoid the complexity of the body fitted numerical grid generation procedure, we use a saw tooth method for the curvilinear geometry approximation. By using block-nested refinement, we achieved the desired geometry Cartesian approximation in order to find an accurate solution of the N–S equations. The method is applied to incompressible laminar flows and is based on a cell-centred approximation. We present the numerical simulation of the flow field for two geometries, driven cavity and stenosed tubes. The utility of the algorithm is tested by comparing the convergence characteristics and accuracy to those of the standard single grid algorithm. The Cartesian block refinement algorithm can be used in any complex curvilinear geometry simulation, to accomplish a reduction in memory requirements and the computational time effort.  相似文献   

20.
本文中,我们从一个高阶的方阵谱问题出发得到多向量Kaup-Newell方程的一个可积分解.通过迹恒等式的帮助,得到多向量Kaup-Newell方程族的双哈密顿结构,而且可以发现这个多向量Kaup-Newell方程的时间部分和空间部分的约束流是刘维尔意义下的两个可积哈密顿系统.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号