首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
徐中巍  张祖兴 《物理学报》2013,62(10):104210-104210
报道了一种带有周期性双折射光纤滤波器的全正色散多波长被动锁模耗散孤子掺镱光纤激光器. 通过数值模拟发现加入滤波器后激光器能输出多波长耗散孤子脉冲, 调节滤波器带宽大小可以得到不同波长个数和波长间隔的多波长锁模耗散孤子脉冲. 在激光器产生的四波长和五波长耗散孤子脉冲中观察到了耗散孤子分子, 并且通过调节滤波器参数和饱和功率可以改变多波长脉冲中耗散孤子分子的个数和波长. 这是在被动锁模光纤激光器中首次实现包含有耗散孤子分子的多波长脉冲. 另外还在实验上实现了全正色散双波长被动锁模耗散孤子的产生. 关键词: 全正色散 耗散孤子 多波长脉冲 孤子分子  相似文献   

2.
We demonstrate the generation of mode-locked pulses in an erbium-doped fiber laser(EDFL) by using a new manganese-doped cadmium selenide quantum-dots-based saturable absorber. The laser produces a soliton pulse train operating at 1561.1 nm with a repetition rate of 1 MHz, as the pump power is varied from 113 to 250 m W.At the maximum pump power, we obtain the pulse duration of 459 ns with a signal-to-noise ratio of 50 dB.  相似文献   

3.
王玉宝  齐晓辉  沈阳  姚繄蕾  徐志敬  潘玉寨 《物理学报》2015,64(20):204205-204205
报道了一种超长腔碳纳米管锁模多波长掺镱光纤激光器, 光纤激光器的总长度为1021.2 m. 实验得到了噪声型孤子和孤子雨两种类型的多波长锁模脉冲, 重复频率均为199.8 kHz. 孤子雨具有更高的输出功率和单脉冲能量, 分别为40.3 mW和201.5 nJ, 对应的脉冲宽度为102.5 ns.  相似文献   

4.
We report on the experimental observation of soliton pulses in an erbium doped fibre ring laser. The passive mode-locking is achieved using the nonlinear polarization rotation technique. By adjusting the pump power and the intracavity polarization controllers, a normal soliton, a stable 8th harmonic mode-locked pulse and a noise-like pulse have been observed in our laser. The experimental results revealed that the noise-like pulse is not suitable for the optical telecommunication, and in order to obtain the stable harmonic mode-locked soliton, a strong unstable CW laser field is necessary to mediate global soliton interaction. The formation mechanism of the harmonic mode-locked pulse has also been analysed.  相似文献   

5.
A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V_2O_5) material as a saturable absorber(SA). The V_2O_5 based SA is hosted into poly ethylene oxide film and attached on fiber ferule in the laser cavity. It shows 7% modulation depth with 71 MW/cm~2 saturation intensity. By incorporating the SA inside the EDFL cavity with managed intra-cavity dispersion, ultrashort soliton pulses are successfully generated with a full width at half maximum of 3.14 ps. The laser operated at central wavelength of 1559.25 nm and repetition frequency of 1 MHz.  相似文献   

6.
Nanosecond pulse generation is demonstrated in a mode-locked erbium-doped fiber laser(EDFL) utilizing a samarium oxide(Sm_2O_3) film. The Sm_2O_3 film exhibits a modulation depth of 33%, which is suitable for modelocking operation. The passively pulsed EDFL operates stably at 1569.8 nm within a pumping power from 109 to 146 m W. The train of generated output pulses has a pulse width of 356 nm repeated at a fundamental frequency of 0.97 MHz. The average output power of 3.91 m W is obtained at a pump power of 146 m W, corresponding to 4.0 nJ pulse energy. The experimental result indicates that the proposed Sm_2O_3 saturable absorber is viable for the construction of a flexible and reliably stable mode-locked pulsed fiber laser operating in the 1.5 m region.  相似文献   

7.
We demonstrate an all-fiber passively multi-wavelength Q-switched Erbium doped fiber laser (EDFL) based on a short Carbon Nanotube based saturable absorber. With the saturable absorber connected in a longer standing wave based fiber laser cavity, stable single, dual, and multiple wavelength Q-switched low threshold EDFL are achieved. Experimental results show that the output pulse of the filtered single wavelength has the same repetition rate as that of the multi-wavelength output while its average output power is lower than that of the multi-wavelength output.  相似文献   

8.
Li X  Liu X  Hu X  Wang L  Lu H  Wang Y  Zhao W 《Optics letters》2010,35(19):3249-3251
We report on a long-cavity passively mode-locked fiber laser in the anomalous dispersion regime. The nonlinear polarization rotation technique is employed to achieve mode locking. The output pulse from the fiber laser has a rectangular shape and a corresponding gaussian-shape spectral profile. Stable mode-locked pulses at a repetition rate of 278 kHz with single pulse energy as high as 715 nJ are obtained under equal bidirectional pumping power of 500 mW in cavity. The experimental results demonstrate that the passively mode-locked fiber laser operating in the anomalous regime can also realize a high-energy pulse, which is different from the conventional low-energy soliton pulse.  相似文献   

9.
报道了一种基于非线性放大环镜和Lyot滤波器技术的态开关型掺铥光纤激光器.通过仔细调节偏振控制器和泵浦功率,掺铥光纤激光器可以分别在多波长态和耗散孤子锁模态运行,并且两种态之间可以相互切换.对于多波长态,在光谱半功率值范围内能生成8个稳定的波长;对于耗散孤子锁模态,在1996 nm的中心波长处产生脉冲能量高达41.49 nJ,脉冲持续时间为2.4 ns,光谱带宽为29 nm的耗散孤子.不同运行态间的切换归因于偏振控制器导致的非线性放大环镜的功能的改变.  相似文献   

10.
Noise characteristics of mode-locked hybrid soliton pulse source (HSPS) where fiber Bragg grating is used as external cavity is presented. Model is based on time-domain solution of coupled-mode equations including spontaneous noise. Relative intensity noise (RIN) is calculated by using numerical solution of these equations. It is shown that inclusion of carrier density noise in the rate equations is necessary for the accurate analysis of noise in mode-locked lasers. It is also found that transform-limited pulses are not generated over a wide tuning range around the fundamental mode-locking frequency with spontaneous and carrier density noise sources if noise level is high. Therefore mode-locking range where transform limited pulses are obtained reduces.  相似文献   

11.
Nanosecond pulse generation in an erbium-doped fiber laser (EDFL) passively mode-locked by a silver nanoparticle(SNP)-based saturable absorber(SA) is experimentally demonstrated. The SA is fabricated by depositing a nanosized SNP layer onto the surface of polyvinyl alcohol film through the thermal evaporation process. By inserting the SA into an EDFL cavity, stable mode-locked operation is achieved at 1561.5 nm with the maximum pulse energy up to 52.3 nJ. The laser operates at a pulse repetition frequency of 1.0 MHz with a pulse width of 202 ns. These results suggest that SNPs could be developed as an effective SA for mode-locking pulse generation.  相似文献   

12.
Self-similar evolution of parabolic pulses in a laser   总被引:1,自引:0,他引:1  
Self-similar propagation of ultrashort, parabolic pulses in a laser resonator is observed theoretically and experimentally. This constitutes a new type of pulse shaping in mode-locked lasers: in contrast to the well-known static (solitonlike) and breathing (dispersion-managed soliton) pulse evolutions, asymptotic solutions to the nonlinear wave equation that governs pulse propagation in most of the laser cavity are observed. Stable self-similar pulses exist with energies much greater than can be tolerated in solitonlike pulse shaping, and this has implications for practical lasers.  相似文献   

13.
《中国物理 B》2021,30(6):64212-064212
Multi-wavelength square pulses are generated in the dissipative soliton resonance(DSR) regime by a Yb-doped fiber laser(YDFL) with a long cavity configuration. The spectral filter effect provided by a passive fiber with low-stress birefringence facilitates the establishment of multi-wavelength operation. Through appropriate control of the cavity parameters,a multi-wavelength DSR pulse can be generated in single-and dual-waveband regions. When the multi-wavelength DSR works in the 1038 nm waveband, the pulse duration can broaden from 2 ns to 37.7 ns. The maximum intra-cavity pulse energy is 152.7 nJ. When the DSR works in the 1038 nm and 1080 nm wavebands, the pulse duration can be tuned from2.3 ns to 10.5 ns with rising pump power. The emergence of the 1080 nm waveband is attributed to the stimulated Raman scattering(SRS) effect. Our work might help a deeper insight to be gained into DSR pulses in all-normal-dispersion YDFLs.  相似文献   

14.
D. Mao  L.R. Wang  H. Lu  X.H. Hu 《Optics Communications》2010,283(18):3492-3496
We experimentally investigate the soliton pairs in a passively mode-locked erbium-doped fiber laser with large normal cavity dispersion. By adjusting the polarization state, four different kinds of soliton pairs are achieved. The pulses in soliton pairs exhibit different temporal separations, and show randomly distributed spikes on the top-flat of spectra. The pulse-pulse interactions in the soliton pairs are investigated, and it is suggested that the pulse separation, pulse duration, and their relative intensities all determine the strength of pulse interactions.  相似文献   

15.
We propose and demonstrate a passively mode-locked erbium-doped fiber laser(EDFL) based on zincoxide/polydimethylsiloxane(Zn O/PDMS) saturable absorber(SA) that evanescently interacts with the light on a tapered fiber. The Zn O/PDMS composite is coated on the whole surface of the tapered fiber to guarantee the maximum efficiency of the SA device, with a measured insertion loss of 0.87 d B and a modulation depth of 6.4%. The proposed laser can generate soliton mode-locking operation at a threshold power of 33.07 m W. The generated output pulse yields a repetition rate and pulse width of 9.77 MHz and 1.03 ps, respectively. These results indicate that the proposed Zn O/PDMS-clad tapered fiber could be useful as an efficient, compatible, and low-cost SA device for ultrafast laser applications.  相似文献   

16.
We demonstrate a nanosecond mode-locked erbium-doped fiber laser(EDFL)based on a reduced graphene oxide(RGO)saturable absorber(SA).The RGO SA is prepared by depositing the graphene oxide(GO)on fluorine mica through thermal reduction of GO.A scanning electron microscope(SEM),Raman spectrometer,and x-ray photoelectron spectroscopy(XPS)are adopted to analyze the RGO characteristics.The results show that the reduction degree of graphene oxide is very high.By embedding the RGO SA into the EDFL cavity,a stable mode-locked fiber laser is achieved with a central wavelength of 1567.29 nm and repetition rate of 12.66 MHz.The maximum output power and the minimum pulse duration are measured to be 18.22 mW and 1.38 ns respectively.As far as we know,the maximum output power of18.22 mW is higher than those of other nanosecond mode-locked oscillators reported.Such a nanosecond pulse duration and megahertz repetition rate make this mode-locked erbium-doped fiber laser a suitable seed oscillator for high-power applications and chirped pulse amplifications.  相似文献   

17.
Close spaced ultra-short bound solitons from DI-NOLM Figure-8 fiber laser   总被引:1,自引:0,他引:1  
Ultra-short soliton pulses of 72 fs without any pedestal and CW components are observed from Figure-8 passively mode-locked fiber laser, which is incorporated with a dispersion-imbalanced nonlinear optical loop mirror (DI-NOLM). Bound states of asymmetrical solitons with pulse width of 103 fs and separation of 585.5 fs are also observed. The bound soliton separation and pulsewidth remain unchanged even after passing through 1.2 km single mode fiber (SMF) transmission.  相似文献   

18.
Collings BC  Bergman K  Knox WH 《Optics letters》1997,22(14):1098-1100
We demonstrate a self-starting, passively mode-locked short-cavity Cr(4+):YAG laser that supports fundamental intracavity solitons over wide ranges of cavity group-velocity dispersion and pulse energies. The total dispersion and nonlinear effects are small enough that stable, N=1 soliton pulses are generated. Equally spaced multiple pulsing is also observed, with fundamental soliton behavior preserved. Regions of bistability exist where, at a constant cavity dispersion, the laser can produce transform-limited pulses of a different width and energy. The laser produces 200-fs pulses at approximately 0.9-, 1.8-, and 2.7-GHz repetition rates with a total of 82 mW of average output power.  相似文献   

19.
Effect of high level of spontaneous and carrier noise on mode-locked hybrid soliton pulse source and relative intensity noise is described. Transform limited pulses are not generated over a wide frequency range because of these noises.  相似文献   

20.
Hsiang WW  Lin CY  Tien MF  Lai Y 《Optics letters》2005,30(18):2493-2495
By employing the technique of asynchronous mode locking, we have successfully demonstrated direct generation of stable 10 GHz 816 fs pulse trains with a supermode-suppression ratio >70 dB from a hybrid mode-locked Er-fiber laser. When the modulation frequency deviates from the cavity harmonic frequency by 15-40 kHz, stable femtosecond soliton pulses are formed. Our results demonstrate that asynchronous mode locking can act as an effective mechanism for achieving a shorter pulse width and for stabilizing high-repetition-rate pulse trains in soliton fiber lasers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号