共查询到20条相似文献,搜索用时 15 毫秒
1.
Aakeröy CB Schultheiss N Desper J 《Dalton transactions (Cambridge, England : 2003)》2006,(13):1627-1635
The construction of Cu(II)-containing supramolecular chains is achieved by combining suitable anionic ligands (for controlling the coordination geometry and for creating a neutral building block) with four new bifunctional ligands containing a metal-coordinating pyridyl site and a self-complementary hydrogen-bonding moiety. Seven crystal structures are presented and in each case, the copper(II) complex displays a "paddlewheel" arrangement, with four carboxylate ligands occupying the equatorial sites, leaving room for the bifunctional ligand to coordinate in the axial positions. The supramolecular chemistry, which organizes the coordination-complexes into the desired infinite 1-D chains, is driven by a combination of N-H...N and N-H...O hydrogen-bonds in five of the seven structures. 相似文献
2.
The dinucleating macrocyclic ligands (L(2;2))(2-) and (L(2;3))(2-), comprised of two 2-[(N-methylamino)methyl]-6-(iminomethyl)-4-bromophenolate entities combined by the -(CH(2))(2)- chain between the two aminic nitrogen atoms and by the -(CH(2))(2)- or -(CH(2))(3)- chain between the two iminic nitrogen atoms, have afforded the following M(II)Cu(II) complexes: [CoCu(L(2;2))](ClO(4))(2).MeCN (1A), [NiCu(L(2;2))](ClO(4))(2) (2A), [ZnCu(L(2;2))](ClO(4))(2).0.5MeCN.EtOH (3A), [CoCu(L(2;3))(MeCN)(2-PrOH)](ClO(4))(2) (4A), [NiCu(L(2;3))](ClO(4))(2) (5A), and [ZnCu(L(2;3))](ClO(4))(2).1.5DMF (6A). [CoCu(L(2;2))(MeCN)(3)](ClO(4))(2) (1A') crystallizes in the monoclinic space group P2(1)/n, a = 11.691(2) A, b = 18.572(3) A, c = 17.058(3) A, beta= 91.18(2) degrees, V = 3703(1) A(3), and Z = 4. [NiCu(L(2;2))(DMF)(2)](ClO(4))(2) (2A') crystallizes in the triclinic space group P(-)1, a = 11.260(2) A, b = 16.359(6) A, c = 10.853(4) A, alpha= 96.98(3) degrees, beta= 91.18(2) degrees, gamma= 75.20(2) degrees, V = 1917(1) A(3), and Z = 2. 4A crystallizes in the monoclinic space group P2(1)/c, a = 15.064(8) A, b = 11.434(5) A, c = 21.352(5) A, beta= 95.83(2)degrees, V = 3659(2) A(3), and Z = 4. The X-ray crystallographic results demonstrate the M(II) to reside in the N(amine)(2)O(2) site and the Cu(II) in the N(imine)(2)O(2) site. The complexes 1-6 are regarded to be isomeric with [CuCo(L(2;2)))](ClO(4))(2).DMF (1B), [CuNi(L(2;2)))](ClO(4))(2).DMF.MeOH (2B), [CuZn(L(2;2)))](ClO(4))(2).H(2)O (3B)), [CuCo(L(2;3)))](ClO(4))(2).2H(2)O (4B), [CuNi(L(2;3)))](ClO(4))(2) (5B), and [CuZn(L(2;3)))](ClO(4))(2).H(2)O (6B) reported previously, when we ignore exogenous donating and solvating molecules. The isomeric M(II)Cu(II) and Cu(II)M(II) complexes are differentiated by X-ray structural, magnetic, visible spectroscopic, and electrochemical studies. The two isomeric forms are significantly stabilized by the "macrocyclic effect" of the ligands, but 1A is converted into 1B on an electrode, and 2A is converted into 2B at elevated temperature. 相似文献
3.
Ferrando-Soria J Pardo E Ruiz-García R Cano J Lloret F Julve M Journaux Y Pasán J Ruiz-Pérez C 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(7):2176-2188
A series of neutral oxamato‐bridged heterobimetallic chains of general formula [MCu(Lx)2(S)2] ? p S ? q H2O [p=0–1, q=0–2.5; L1=N‐2,6‐dimethylphenyloxamate, S=DMF with M=Mn ( 1 a ) and Co ( 1 b ); L2=N‐2,6‐diethylphenyloxamate, S=DMF with M=Mn ( 2 a ) and Co ( 2 b ) or S=DMSO with M=Mn ( 2 c ) and Co ( 2 d ); L3=N‐2,6‐diisopropylphenyloxamate, S=DMF with M=Mn ( 3 a ) and Co ( 3 b ) or S=DMSO with M=Mn ( 3 c ) and Co ( 3 d )] were prepared by treating the corresponding anionic oxamatocopper(II) complexes [Cu(Lx)2]2? (x=1–3) with M2+ cations (M=Mn and Co) in DMF or DMSO as the solvent. The single‐crystal X‐ray structures of 2 a and 3 a reveal the occurrence of well‐isolated, zigzag, oxamato‐bridged manganese(II)–copper(II) chains. The intrachain Cu ??? Mn distances across the oxamato bridge are 5.3761(7) and 5.4002(17) Å for 2 a and 3 a , respectively, whereas the shortest interchain Mn ??? Mn distances are 9.4475(16) and 8.1649(14) Å for 2 a and 3 a , respectively. All of these MIICuII chains (M=Mn and Co) exhibit 1D ferrimagnetic behaviour with moderately strong intrachain antiferromagnetic coupling between the square‐planar CuII and octahedral high‐spin MII ions across the oxamato bridge [?J=31.4–35.2 and 33.4–44.8 cm?1, respectively; H =∑i?J S M,i( S Cu,i+ S Cu,i?1)]. Only the CoIICuII chains show slow magnetic relaxation effects characteristic of single‐chain magnets (SCMs). Analysis of the magnetic relaxation dynamics of 3 d shows a thermally activated mechanism (Arrhenius law dependence) with values of the pre‐exponential factor (τ0=2.6×10?9 s) and activation energy (Ea=7.7 cm?1) that are typical of SCMs. In contrast, two relaxation regimes are observed for 2 d in different temperature regions (τ0=3.2×10?10 s and Ea=24.7 cm?1 for T<4.5 K and τ0=3.2×10?14 s and Ea=37.5 cm?1 for T>4.5 K). 相似文献
4.
Cuevas A Kremer C Suescun L Mombrú AW Lloret F Julve M Faus J 《Dalton transactions (Cambridge, England : 2003)》2010,39(47):11403-11411
The mononuclear Re(IV) compound of formula (PPh(4))(2)[ReBr(4)(mal)] (1) was used as a ligand to obtain the heterobimetallic species [ReBr(4)(μ-mal)Co(dmphen)(2)]· MeCN (2), [ReBr(4)(μ-mal)Ni(dmphen)(2)] (3), [ReBr(4)(μ-mal)Mn(dmphen)(2)] (4a), [ReBr(4)(μ-mal)Mn(dmphen)(H(2)O)(2)]·dmphen·MeCN·H(2)O (4b), [ReBr(4)(μ-mal)Cu(phen)(2)]·1/4H(2)O (5) and [ReBr(4)(μ-mal)Cu(bipy)(2)] (6) (mal = malonate dianion, dmphen = 2,9-dimethyl-1,10-phenanthroline, phen = 1,10-phenanthroline and bipy = 2,2'-bipyridine). The structures of 2 and 5 (single-crystal X-ray diffraction) are made up of neutral [ReBr(4)(μ-mal)M(AA)] dinuclear units [AA = dmphen with M = Co (2) and AA = phen with M = Cu (5)] where the metal ions are connected through a malonate ligand which exhibits simultaneously the bidentate [at the Re(IV)] and monodentate [at the M(II)] coordination modes. The carboxylate-malonate group in them adopts the anti-syn conformation with intramolecular ReM separation of 5.098(8) (2) and 4.947(2) ? (5). The magnetic properties of 1-6 were investigated in the temperature range 1.9-295 K. The magnetic behaviour of 1 is the expected for a magnetically isolated Re(IV) complex with a large value of the zero-field splitting (2D ca. -70 cm(-1)) whereas weak antiferromagnetic interactions between Re(IV) and M(II) are observed in the heterobimetallic compounds 2 (J = -0.63 cm(-1)), 3 (J = -1.37 cm(-1)), 4a (J = -1.29 cm(-1)), 5 (J = -1.83 cm(-1)) and 6 (J = -0.26 cm(-1)). Remarkably, 4b behaves as a ferrimagnetic chain with regular alternating Re(IV) and Mn(II) cations (J = -2.64 cm(-1)). 相似文献
5.
The hydrothermal reaction of fumaric acid, benzylamine, and metal salts yielded M[(rac-N-benzyl-Asp)(H(2)O)] (M = Co, Ni), 1 and 2, and Ni[(rac-N-benzyl-Asp)(H(2)O)(3)]·H(2)O 3. Under mild hydrothermal conditions, Michael addition of benzylamine to fumaric acid led to the formation of a racemic mixture of N-benzyl aspartic acid enantiomers. The noncentrosymmetric structures of 1 and 2 consist of one-dimensional polymeric chains in which metal cations are bridged by d- and l-N-benzyl aspartate anions alternating along the chain. The centrosymmetric structure of 3 is composed of discrete Ni[(rac-N-benzyl-Asp)(H(2)O)(3)] units that are connected by hydrogen bonds into layers. The single layers are homochiral but are hydrogen bonded to similar homochiral layers that contain the N-benzyl aspartate with the opposite handedness. Compounds 1 and 2 showed second harmonic generation (SHG), and their magnetic and thermodynamic properties are described. 相似文献
6.
Three new rigid conjugated fulvene ligands L1-L3 were synthesized. L1 and L3 have been prepared by an aroylation reaction of cyclohexyl-substituted cyclopentadienyl anions. L2 was prepared by the reaction of L1 with PhNHNH2 in hot enthanol. Six new coordination polymers, namely [Ag(C25H20N2O2)(ClO4)] x 3.5C6H6 (1), [Ag2(mu-C31H24N4)(eta2-C6H6)(H2O)](ClO4)2 x (C6H6) x (H2O)0.5 (3), [Ag(C31H24N4)]SbF6 x solvate (4), [Ag(C31H24N4)](SbF6)2 x 2C6H6 x CH2Cl2 (5), [Ag(C25H20N2O2)2]SbF6 (6), and [Ag(C25H20N2O2)2]SbF6 (7), and one seven-membered cobaltacycle-containing complex, namely Co(C25H20N2O2)2(C2H5OH)2 (2), were obtained through self-assembly based on these three new fulvene lignads. L2-L3 and compounds 1-7 have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. The results indicate that the coordination chemistry of new fulvene ligands is versatile. They can bind metal ions not only through the terminal N-donors and fulvene carbon atoms into organometallic coordination polymers but also through the two chelating carbonyl groups into unusual seven-membered metallo-ring supramolecular complexes. In the solid state, ligands L1-L3 are luminescent. A blue-shift in the emission was observed between the free ligand L1 and the one incorporated into Co(II)-containing complex 2, and a red-shift in the emission was observed between the free ligand L3 and the one incorporated into Ag(I)-containing polymeric compounds 6 and 7. 相似文献
7.
Two 3D coordination polymers, [Co(24)(OH)(12)(SO(4))(12)(ip)(6)(DMSO)(18)(H(2)O)(6)]·(DMSO)(6)(EtOH)(6)(H(2)O)(36) (1·guests, ip = isophthalate) and [Ni(24)(OH)(12)(SO(4))(12)(ip)(6)(DMSO)(12)(H(2)O)(12)]·(DMSO)(6)(EtOH)(6)(H(2)O)(20) (2·guests), constructed with nanosized tetraicosanuclear Co(II) and Ni(II) wheels are solvothermally synthesized. Both complexes show intra- and interwheel dominant antiferromagnetic interactions. 相似文献
8.
Wang W Wang S Hong Y Tang BZ Lin N 《Chemical communications (Cambridge, England)》2011,47(36):10073-10075
We studied the supramolecular assembly of a multifunctional ligand, cis-bis-terpyridine tetraphenyl ethylene, on a Cu(111) surface by low-temperature scanning tunneling microscopy (STM). Three distinctive supramolecular structures, metallacycles, propeller-shaped clusters and extended linear chains, are formed under specific assembly conditions owing to different inter-molecular binding modes of Cu-coordination, van der Waals interaction and hydrogen bonding, respectively. 相似文献
9.
The reaction of nickel, cobalt, and manganese with 1,2-ethylenediphosphonic acid or 1,2-ethylenediphosphonic acid and 1,10-phenanthroline under hydrothermal conditions resulted in the pillared layered structures Co2(H2O)2(O3PC2H4PO3) (I) and Ni2(H2O)2(O3PC2H4PO3) (II), which are isostructural to a zinc phase that has previously been characterized by X-ray powder methods. In addition, a 1D chain structure, Mn(HO3P(CH2)2PO3H)(H2O)2(C12H8N2) (III), and a pillared layered structure, Mn(HO3P(CH2)2PO3H) (IV), were obtained. The structures of these phases were solved by single-crystal X-ray diffraction methods. The crystallographic data are as follows: compound I P21/n (No. 14), a = 5.6500(11) A, b = 4.7800(10) A, c = 15.330(3) A, beta = 98.50(3) degrees, V = 409.47(14) A3, Z = 2; compound II P21/n (No. 14), a = 5.5807(11) A, b = 4.7205(9) A, c = 15.250(3) A, beta = 98.55(3) degrees, V = 397.28(13) A3, Z = 2; compound III C2/c (No. 15), a = 12.109(2) A, b = 15.328(3) A, c = 9.848(2) A, beta = 108.88(3) degrees, V = 1729.5(6) A3, Z = 4; compound IV P (No. 2), a = 5.498(5) A, b = 7.715(6) A, c = 8.093(7) A, alpha = 82.986(12) degrees, beta = 75.565(12) degrees, gamma = 80.582(12)degrees, V = 326.7(5) A3, Z = 2. Magnetic measurements show antiferromagnetic behavior below TN = 7 K for I and 13 K for II. 相似文献
10.
Soldatov D. V. Logvinenko V. A. Dyadin Yu. A. Lipkowski J. Suwinska K. 《Journal of Structural Chemistry》1999,40(5):757-771
The title compounds form an iso structural series and are isomorphic with other [MPy4X2]-2Py clathrates (XRD, KM4 diffractometer, cell parameters and space group Ccca from 17–80 reflections). In the clathrate
[NiPy4(NCO)2]-2Py studied in detail (XRD, CAD-4 diffractom eter, λCuKα, Ω/2θ scan mode, θmax = 78‡, 990 strong reflections, 104 parameters, R = 0.053), the host molecule has 222 symmetry, and the twofold axes run along
the coordination bonds. The transoctahedral environment of nickel consists of six nitrogen atoms of four pyridine and two
isocyanate ligands. The coordination polyhedron is slightly distorted due to changes in the bond lengths. The molecule has
a propeller conformation. The guest molecules lie in the cavities of the crystal structure in conformity with the van der
Waals type of packing. The host complex [NiPy4(NCO)2] (XRD, CAD-4 diffractometer, 4615 strong reflections, 560 parameters, R-0.037) crystallizes in the triclinic crystal system
(space group P1) with two independent asymmetric molecules in the unit cell. The molecular structure is analogous to that
in the ciathrate phase, but the coordination angles are severely distorted; one of the molecules acquires a distorted propeller
conformation, and the other, a centrosvmmetric conformation, which is less favorable. While being structurally identical,
the [MPy4(NCO)2]-2Py clathrates differ heavily in the properties. The first four complexes dissociate to host complexes, and their thermal
stability changes in the sequence Mn< Fe< Co< Ni; the Cu and Zn clathrates decompose in one step to dipyridine complexes with
decomposition of host complexes. Decomposition of the Cd ciathrate follows one of these patterns depending on conditions.
The results are compared with those for other known systems. Synthetic procedures are given.
Translated fromZhurnal Strukturnoi Khimii, Vol. 40, No. 5, pp. 935–953, September–October, 1999. 相似文献
11.
Ferrando-Soria J Cangussu D Eslava M Journaux Y Lescouëzec R Julve M Lloret F Pasán J Ruiz-Pérez C Lhotel E Paulsen C Pardo E 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(44):12482-12494
A new series of neutral oxamato-bridged M(II)Cu(II) chiral chains of general formula [MCuL(x)(S)(m)(H(2)O)(n)]·aS·bH(2)O [L(1)=(M)-1,1'-binaphthalene-2,2'-bis(oxamate) with M=Mn (1a) and Co (1b); L(2)=(P)-1,1'-binaphthalene-2,2'-bis(oxamate) with M=Mn (2a) and Co (2b)] and the analogous racemic chains of formula [MCuL(3)(S)(m)(H(2)O)(n)]·aS·bH(2)O [L(3)=1,1'-binaphthalene-2,2'-bis(oxamate) with M=Mn (3a) and Co (3b)] have been prepared by reaction of the corresponding dianionic oxamatocopper(II) complex [Cu(L(x))](2-) with Mn(2+) or Co(2+) cations in either dimethylformamide (DMF) or dimethyl sulfoxide (DMSO). Solid circular dichroism (CD) spectra of the bimetallic chain compounds were recorded to establish their chiral and enantiomeric nature. They exhibit maximum positive and negative Cotton effects, each pair of enantiomeric chains being non-superimposable mirror images. The crystal structures of the Mn(II)Cu(II) (1a-3a) and the Co(II)Cu(II) (1b and 2b) chain compounds were solved by single-crystal X-ray diffraction methods. Our attempts to obtain X-ray quality crystals of 3b were unsuccessful. The values of the shortest interchain Mn···Mn and Co···Co distances are indicative of a good isolation of neighbouring chains in the crystal lattice, which is caused by the bulky aromatic ligand. Although all the Mn(II)Cu(II) and Co(II)Cu(II) chains exhibit ferrimagnetic behaviour (-J(MnCu)=18.9-26.6 cm(-1) and -J(CoCu)=19.5-32.5 cm(-1)), only the enantiopure Co(II)Cu(II) chains (1b and 2b) show slow magnetic relaxation at low temperatures (T(B)=0.6-1.8 K), which is a characteristic of single-chain magnets (SCMs) and is related to the magnetic anisotropy of the high-spin Co(II) ion. Analysis of the SCM behaviour of 1b and 2b, based on Glauber's theory for an Ising one-dimensional system, shows a thermally activated mechanism for the magnetic relaxation (Arrhenius law dependence). The energy barriers (E(a)) to reverse the magnetisation direction are 8.2 (1b) and 8.1cm(-1) (2b), whereas the pre-exponential factor (τ(0)) is 1.9×10(-8) (1b) and 6.0×10(-9) s (2b). Interestingly, the racemic Co(II)Cu(II) chain analogue, 3b, showed no evidence of SCM behaviour. 相似文献
12.
Mikhailov O. V. Tatarintseva T. B. Naumkina N. I. 《Russian Journal of Coordination Chemistry》2003,29(5):327-334
Complexation processes that occur between cadmium(II) hexacyanoferrate(II) (Cd2[Fe(CN)6]) and 3d-metal ions M(II) (M = Mn, Co, Ni, Cu, Zn) in thin gelatin layers with the immobilized cadmium(II) hexacyanoferrates when brought in contact with aqueous solutions of d-metal chlorides are studied. Cd2+ ions were found to be replaced to some extent by M2+ ions of the indicated d metals (except for Mn(II)) and form binuclear (dd)-metal hexacyanoferrates(II). A complete replacement of Cd(II) and formation of M2[Fe(CN)6] was observed in none of the cases. 相似文献
13.
Two flexible thioether-containing heterocyclic ligands bis(2-pyrazylmethyl)sulfide (L1) and 2-benzylsulfanylmethylpyrazine (L2) have arene rings with differing pi-acidities which were used to probe anion-pi binding in five 1-D coordination polymers formed from the metal salts Co(ClO4)2, Ni(NO3)2, and Cd(NO3)2. In {[Co(L1)(MeCN)2](ClO4)2}infinity (1), {[Ni(L1)(NO3)2]}infinity (2), and {[Cd2(L1)(MeCN)(H2O)(NO3)4].H2O}infinity (3.H2O), the symmetrical ligand L1 was bound facially to the metal center and was bridged through a pyrazine donor to an adjacent metal forming a polymer chain. The folding of L1 formed U-shaped pi-pockets in 1 and 3.H2O which encapsulated free and bound anions, respectively. The anions interacted with the pi-acidic centers in a variety of different binding modes including anion-pi-anion and pi-anion-pi sandwiching. A wider pi-pocket was formed in 2 which also contained anion-pi interactions. The polymer chains in 2 were interdigitated through a rare type of complementary T-shaped N(pyrazine)...pi interaction. In {[Co(L2)(H2O)3](ClO4)2.H2O}infinity (4.H2O) and {[Cd(L2)(H2O)(NO3)2]}infinity (5), the unsymmetrical ligand L2 chelated the metal center and bridged through a pyrazine donor to an adjacent metal forming a polymer chain. The ligand arrangement resulted in the anions in both structures being involved in only anion-pi-anion sandwich interactions. In 4.H2O, the noncoordinated ClO4- anions interacted with only one chain while in 5 the coordinated NO3- anions acted as anion-pi supramolecular synthons between chains. Comparison between the polymers formed with ligands L1 and L2 showed that only the more pi-acidic ring was involved in the anion-pi interactions. 相似文献
14.
Mikhailov Oleg V. Tatarintseva Tatyana B. Brus'ko Vasiliy V. Zabirov Nahil G. 《Transition Metal Chemistry》2002,27(4):423-428
Complexing processes in MII-N-diisopropoxythiophosphorylthiobenzamide binary systems (M = Co, Ni, Cu) in metal(II) hexacyanoferrate(II) gelatin-immobilized matrices upon contact with aqueous–alkaline (pH = 12.0 ± 0.1) solutions of organic compounds have been studied. It has been shown that, in CoII and CuII, the initial act of complexing involves destruction of the CoII and CuII hexacyanoferrates(II) by OH– ions, leading to formation of the corresponding hydroxides which react with the ligand indicated. In the both systems, successive addition of two ligand molecules per M(OH)2 fragment occurs and [MB(OH)(OH2)] and [MB2] coordination compounds are formed (B–-a singly deprotonated ligand form). In the NiII-N-diisopropoxythiophosphorylthiobenzamide system, the formation of three complexes, (Ni2BOH)2[Fe(CN)6], [NiB(OH)(OH2)] and [NiB2] occurs. 相似文献
15.
16.
Two mononuclear complexes [Mn(5-methylpyrazole)4(N3)2] (1) and [Ni(5-methylpyrazole)4(N3)2] (2), as well as a novel one-dimensional coordination polymer [Co(3-methylpyrazole)2(5-methylpyrazole)2(tp)]n (3) (tp = terephthalate), were characterized. The isostructural complexes, 1 and 2, display two-dimensional supramolecular networks formed by hydrogen bonds between the N-H groups of 5-methylpyrazoles and the end N atoms of the azide ligands and additional face-to-face pi-pi interactions of the 5-methylpyrazoles. For 3, tp-bridged one-dimensional chains assisted by intrachain hydrogen bonds among the N-H groups of methylpyrazoles and carboxylate oxygens are connected with the help of interchain C-H...O hydrogen bonds, leading to a two-dimensional structure. The intra- and interchain hydrogen bonds account for the coexistence of two unique coordination forms (5-methylpyrazole and 3-methylpyrazole) of methylpyrazoles in the same coordination sphere. Weak antiferromagnetic interactions coupled with the spin-orbit coupling effect are operative in 3 through the tp ligands. 相似文献
17.
Martín S Barandika MG Lezama L Pizarro JL Serna ZE Ruiz De Larramendi JI Arriortua MI Rojo T Cortés R 《Inorganic chemistry》2001,40(17):4109-4115
Four compounds of general formula [M(4,4'bipy)(N(3))2](n) (M = Mn (1), Zn (2), Co (3), Ni (4)) have been synthesized and magnetostructurally characterized by means of X-ray diffraction analysis, IR and ESR spectroscopies, and measurements of the magnetic susceptibility and magnetization. Compound 1 (C(10)H(8)N(8)Mn) crystallizes in the tetragonal P4(3)2(1)2 space group, Z = 4, with a = 8.229(2), b = 8.229(2), and c = 16.915(2) A. It exhibits an acentric 3D structure where Mn(II) ions are linked through EE-azide groups resulting in a diamondoid network. The 4,4'bipy ligands are coordinated on the axial positions of the octahedral spheres reinforcing the intermetallic connections. Weak ferromagnetism arising from spin canting is observed for compound 1. Compounds 2, 3, and 4 are proposed to be isomorphous and would consist of a 2D array where alternating EO + EE/EO + EE/EO + EO azide-chains are linked by 4,4'bipy ligands resulting in pi-pi stacked pyridyl-columns. The azido ligand dispositions in compounds 3 and 4 make possible systems of type -AF-AF-F-, which would give rise to a topological ferromagnetic behavior. 相似文献
18.
Two structurally related flexible imidazolyl ligands, bis(N-imidazolyl)methane (L1) and 1,4-bis(N-imidazolyl)butane (L2), were reacted with Cu(II), Co(II) and Ni(II) salts of aliphatic/aromatic dicarboxylic acids resulting in the formation of a number of novel metal–organic coordination architectures, [CuB2(ox)2(L1)2(H2O)2] · 4H2O (1) (ox = oxalate), [Cu(pdc)(L2)1.5] · 4H2O (2, pdc = pyridine-2,6-dicarboxylate), [Co(L)2(H2O)2](tp) · 4H2O (3, tp = terephthalate), [Ni(L1)2(H2O)2](ip) · 5H2O (4, ip = isophthalate), [Cu2(L1)4(H2O)4](tp)2 · 7H2O (5), [Co(mal)(L1)(H2O)] · 0.5MeOH (6, mal = malonate), [Co(pdc)(L1)(H2O)] (7). All the complexes have been structurally characterized by X-ray diffraction analysis. The different coordination modes of the dicarboxylate anions, due to their chain length, rigidity and diimidazolyl functionality, lead to a wide range of different coordination structures. The coordination polymers exhibit 1D single chain, ladder, 2D sheet and 2D network structures. The aliphatic and aromatic dicarboxylates can adopt chelating μ2 and chelating-bridging μ3 coordination modes, or act as uncoordinated counter anions. The central metal ions are coordinated in N2O4, N4O2, N2O3 and N3O3 fashions, depending on the ancillary ligands. The topology of 1 gives rise to macrocycles which are connected through hydrogen bonds to form 1D chains, whereas compound 2 exhibits a 1D polymeric ladder in which the carboxylate acts as a pincer ligand. Compounds 3–5 show doubly bridged 1D chains, and the dicarboxylate groups are not coordinated but form 2D corrugated sheets with water molecules intercalated between the cationic layers. Compound 6 has a 2D network sheet structure in which each metal ion links three neighboring Co atoms by the bis(N-imidazolyl)methane ligand. The cobalt compound 7, with a 2D polymeric double sheet structure, is built from pincer carboxylate (pdc) and 1,4-bis(N-imidazolyl)methane ligands. 相似文献
19.
Diatomite supported Pd-M (M=Cu, Co, Ni) bimetal nanocatalysts with various metal compositions were prepared and characterized by means of X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was demonstrated that the metal nanoparticles were uniformly distributed on the support, and their size was centered around 8nm with a relatively narrow size distribution. The catalysts were used to catalyze hydrogenation of long-chain aliphatic esters, including methyl palmitate, methyl stearate, and methyl laurate. It was indicated that the all diatomite-supported Pd-based bimetal catalysts were active to the selective hydrogenation of long-chain esters to corresponding alcohols at 270°C, originated from the synergistic effect between the metal particles and the diatomite support. For the selective hydrogenation of methyl palmitate, Pd-Cu/diatomite with metal loading of 1% and Pd/Cu=3 displayed the highest performance, giving a 1-hexadecanol yield of 82.9% at the substrate conversion of 98.8%. 相似文献
20.
The thermodynamic and geometric parameters of M(II) macrotetracyclic chelates (M = Mn, Fe, Co, Ni, Cu, and Zn) with the (NNNN) coordination of the donor ligand sites, formed by the complexation reactions of corresponding M(II) compounds, ethanedithioamide H2N-C(=S)-C(=S)-NH2, and acetone H3C-C(=O)-CH3 in gelatin-immobilized matrix implants have been calculated by the OPBE/TZVP density functional theory method with the use of the Gaussian 09 program package. The bond lengths and bond and torsion angles in these complexes have been reported. It has been shown that despite the fact that the MN4 chelate core in them is almost planar, the five- and six-membered chelate rings are pronouncedly non-coplanar. In the Mn(II), Fe(II), Co(II), and Ni(II) complexes, these chelate rings are pairwise identical, whereas in the Cu(II) and Zn(II) complexes, they are noticeably different. 相似文献