首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
We report a new headspace analytical method in which multiple headspace extraction is incorporated with the full evaporation technique. The pressure uncertainty caused by the solid content change in the samples has a great impact to the measurement accuracy in the conventional full evaporation headspace analysis. The results (using ethanol solution as the model sample) showed that the present technique is effective to minimize such a problem. The proposed full evaporation multiple headspace extraction analysis technique is also automated and practical, and which could greatly broaden the applications of the full‐evaporation‐based headspace analysis.  相似文献   

2.
This paper reported a full evaporation headspace gas chromatographic (GC) technique for determination of methanol content in black liquors (pulping spent liquor). In this method, a very small volume (10-20 microL) of liquor sample is introduced into a headspace sample vial (20 mL) and heated up to a temperature of 105 degrees C. A near-complete mass transfer of methanol from the liquid phase to vapor phase (headspace), i.e., a full evaporation, can be achieved within 3 min. The methanol in the headspace of the vial is then measured by GC. The present method is simple, rapid and accurate.  相似文献   

3.
This article reports on the development of a new full evaporation (FE) headspace technique based on multiple headspace extraction (MHE). Using multiple headspace extraction procedures, the sample volume used in the headspace can be dramatically increased, thereby significantly enhancing the sensitivity. The technique was applied to the quantification of ethanol. The results showed that up to 0.2 mL of ethanol solution can be used in full evaporation HS-GC analysis by adding multiple headspace extraction procedures. The sensitivity for ethanol content was ten times higher than that in conventional full evaporation HS-GC measurement without using multiple headspace extraction procedures. The present MHE-FE headspace analytical technique is accurate and automated and has great potential for the application in determining volatile analytes in aqueous samples.  相似文献   

4.
Aldehydes in cellulose-based materials such as cardboard are derived from lipid degradation. Depending on the production- and storage conditions of the cardboard, the aldehyde content changes. Owing to their sensorial properties, accurate control of their content is obligatory. The cardboard usually exhibits strong and even varying matrix effects and considerable inhomogeneity.The comparability of results of analysis after static and dynamic headspace extraction of short chained saturated aldehydes from cellulose-based matrices was studied. In the case of the static extraction technique, special attention was given to the establishment of the headspace equilibrium, which could be reached by the addition of water as a displacer.For dynamic headspace extraction, the volatiles were purged from the matrix by an inert gas and enriched on an adsorbent trap. In theory, the extraction yield should be 100%. Since there are no certified reference materials for verification of the extraction efficiency available, confirmation was achieved by determining the total amount of analytes in the sample by means of multiple headspace extraction.In comparison to the static operation mode, the major drawbacks of the dynamic technique were found to be based on a more complex parameter string and on limitations to the extractable sample quantities, which may result in enhanced uncertainty of the measurements. Nevertheless, the results of analysis pointed out that both headspace extraction techniques are suitable for the determination of volatile aldehydes from cellulose-based materials.  相似文献   

5.
This study demonstrated a full evaporation (FE) headspace gas chromatographic technique for the determination of residual monomer in methyl methacrylate (MMA) polymer latex. A very small amount (approximately 10-30 mg) of latex was added to a sealed headspace sample vial (20 ml). A near-complete monomer mass transfer from both liquid (aqueous phase) and solid phase (polymer particles) to the vapor phase (headspace) is achieved within 5 min at a temperature of 110 degrees C. The method eliminates sample pretreatment procedures such as the solvent extraction. Thus, it avoids the risk of polymer deposition on the GC system caused by a directly injection of extraction solvent in the conventional GC monomer analysis. The present method is simple, rapid, and accurate.  相似文献   

6.
To discourage consumption, ethanol is often denatured using both volatile (e.g., methyl ethyl ketone and isopropanol) and nonvolatile (e.g., denatonium benzoate) chemical substances. As a result, the analysis of denatured ethanol samples is usually performed by multiple techniques such as gas chromatography for the volatile denaturants and liquid chromatography for the nonvolatile ones. However, the need for multiple techniques increases the cost of analysis and forms a severe obstruction for on‐site product control. Using the full evaporation technique combined with gas chromatography and flame ionization detection, only one analytical methodology has to be used here to determine both volatile and nonvolatile denaturants in denatured ethanol. Denatonium benzoate is determined as benzyl chloride following an in‐vial reaction. Compared to conventional techniques, the novel method performs equally well, but it is simpler to apply. At the same time, drawbacks of alternative methods are circumvented such as equilibration issues and alterations to the stationary phase when using liquid chromatography with ion pairing agents or matrix effects when applying static headspace gas chromatography. The developed method showed good linearity, repeatability, and recovery toward all analytes and was applied to the analysis of commercial denatured ethanol for disinfection and ethanol‐based windscreen washer fluids.  相似文献   

7.
Li H  Chai XS  Zhan H  Fu S 《Journal of chromatography. A》2010,1217(48):7616-7619
This paper reports a full evaporation (FE) headspace gas chromatographic (HS-GC) method for rapid determination of furfural in the biomass hydrolysate. The data show that a near-complete mass transfer of furfural in the sample from biomass hydrolysate to the vapor phase (headspace) was achieved within 3 min at 105°C when a very small (<40 μL) sample was added to a 20 mL headspace sample vial. The acid-catalyzed furfural decomposition under these conditions was negligible. The furfural in the vapor phase was then determined by HS-GC using a flame ionization detector. The results showed that the method has an excellent measurement precision (RSD<0.5%) and accuracy (recovery=100.2±1.7%) for furfural quantification in carbohydrate hydrolysate samples. The method requires no sample pretreatment, so it is simple, rapid and accurate, and suitable for applications in lignocellulosic biomass conversion to fuel ethanol or other high value-added products.  相似文献   

8.
顶空气相色谱-质谱联用技术的应用进展   总被引:1,自引:0,他引:1  
张茜  刘炜伦  路亚楠  吕运开 《色谱》2018,36(10):962-971
顶空分析作为一种无有机溶剂萃取的样品处理技术,通常与气相色谱-质谱(GC-MS)技术结合用来分析复杂基质中的挥发性有机物。顶空气相色谱-质谱(HS-GC-MS)技术具有快速、高效、环保、灵敏度高等特点,在常规分析中发挥着重要作用。该文简要概述了静态顶空、动态顶空、顶空固相微萃取分析以及GC-MS联用技术,并介绍了整个顶空分析系统的影响因素和优化过程。根据基质类型的分类,综述了HS-GC-MS在食品和饮料、环境、生物等样品中的应用实例。HS-GC-MS的研究非常活跃,不断出现新应用,在分析挥发性有机物方面具有广阔前景。  相似文献   

9.
In this study, headspace single-drop microextraction (HS-SDME) coupled with gas chromatography-flame ionization detection (GC-FID), was employed to determine short-chain fatty acids (SCFAs) in ruthenium tetroxide (RuO4) oxidation products of asphaltenes. Several significant parameters, such as drop solvent type, drop volume, sample solution ionic strength, agitation speed, extraction time, and ratio of headspace volume to sample volume were optimized. Under optimum extraction conditions (i.e., a 3-μL drop of 1-butanol, 20 min exposure to the headspace of a 6 mL aqueous sample placed in a 10 mL vial, stirring at 1000 rpm at room temperature, and 30% (w/v) NaCl content), the reproducibility and accuracy of the method have been tested and found to be satisfactory. The analysis of a real asphaltene sample using this method proved that HS-SDME can be a promising tool for the determination of volatile SCFAs in complex matrices.  相似文献   

10.
A new automated static headspace N2O analysis technique has been developed that includes a CTC autosampler composed of agitator and headspace modules, a combined-valve switching system and ECD Gas Chromatography. This new CTC autosampling technique is more efficient for sample analysis than similar systems and takes approximately 10 mins to analyze each sample without pre-equilibration. The accuracy and precision of this method are approximately 2% each. Laboratory and field results demonstrate that this technique is suitable for seawater sample analysis.  相似文献   

11.
This paper reports a full evaporation (FE) headspace gas chromatographic (GC) method for rapid determination of ethanol in fermentation liquor. The data show that ethanol in the fermentation liquor was transferred to the vapor phase (headspace) almost completely within 3 min at a temperature of 105 °C when a very small volume (<50 μL) of sample was directly added to a sealed headspace sample vial (20 mL). The ethanol in the vapor phase was then measured by headspace GC using a flame ionization detector. The results show that the present method has an excellent measurement precision (RSD = 1.62%) and accuracy (recovery = 98.1 (±1.76%)) for the ethanol quantification in fermentation liquors. The method requires no sample pretreatment and is very simple and rapid.  相似文献   

12.
The headspace gas in static headspace gas chromatography contains mostly saturated water vapor. In the case of the cryofocusing enrichment technique this may cause baseline distortion in the early part of the chromatogram or may even lead to ice-plugging of the capillary column. A water-trap is described in which the water vapor is removed from the headspace gas before entering the cryo-trap. The water trap is packed with lithium chloride on a porous support and is regenerated after each analysis by heating under backflush conditions. It therefore can be used for automatic operation. Data are given for the precision and accuracy, and some practical examples, for environmental and flavor analysis are shown.  相似文献   

13.
Solid-phase microextraction using a 30 microns polydimethylsiloxane fibre has been used to sample the volatile organic compounds from standard mixtures and from mixtures produced by the decomposition of organic compounds. This method of sampling has been compared with the direct injection of an aliquot of headspace gas and shows an enrichment factor of approximately 100 over a 1 ml gas injection for organosulphur gases such as dimethyldisulphide. The performance of the fibre has been evaluated with respect to accuracy and precision at several concentrations in representing the composition of multicomponent mixtures. It was found that the presence of a second component in a gas sample reduced the capacity of the fibre to absorb the primary component. The selectivity of the fibre for various volatile compounds with differing functionality was also studied. It was found that the non-polar polydimethylsiloxane fibre preferentially absorbed the non-polar components of a mixture, e.g. nonane and, correspondingly, under reported the more polar components, e.g. ethanol. Hence, the fibre discriminates in favour of non-polar and against polar components in a mixture in comparison with direct analysis of a headspace sample. Thus, quantitation of a component in a multi-component mixture is liable to error from competitive interference from other components. A major advantage of the technique, however, is that it does not absorb, and therefore introduce, water into the analytical system.  相似文献   

14.
《Analytical letters》2012,45(13):1875-1884
A headspace liquid phase microextraction (HS-LPME) method has been developed and optimized for the residual solvent determination in pharmaceutical products. A microdrop of n-hexanol containing isopropanol (as internal standard) was suspended at the tip of a gas chromatographic syringe and exposed to the headspace of the sample solution. After extraction for an optimized time, the microdrop was retracted into the syringe and injected directly into a GC injection port. Critical experimental factors, including extraction solvent, temperature, ionic strength, stirring rate, extraction time, equilibrium time, drop volume, and sample volume were investigated and optimized. Compared with the static headspace technique, HS-LPME method showed superior results, being compatible with the pharmaceutical samples.  相似文献   

15.
This study describes a rapid method to identify different truffle species by analysis of their volatile compound fraction using static headspace solid-phase microextraction gas chromatography/mass spectrometry. The volatile organic compounds (VOCs) were extracted using a new 2-cm 50/30 microm DVB/CAR/PDMS fiber placed for 10 min in the headspace of the truffle sample with the vial maintained at 20 degrees C (in a thermostatically controlled analysis room). The mass spectra of the VOC chromatograms were represented as 'fingerprints' of the analysed samples. Next, stepwise factorial discriminant analysis afforded a limited number of characteristic fragment ions that allowed a classification of the truffle species studied. This new method provides an effective approach to rapid quality control and identification of truffle species by analysis of their volatile fraction. Moreover, this method offers the advantage of minimizing thermal, mechanical, and chemical modifications of the truffles, thereby reducing the risk of analytical artifacts.  相似文献   

16.
A suitable analytical procedure based on static headspace solid-phase microextraction (SPME) followed by thermal desorption gas chromatography-ion trap mass spectrometry detection (GC-(ITD)MS), was developed and applied for the qualitative and semi-quantitative analysis of volatile components of Portuguese Terras Madeirenses red wines. The headspace SPME method was optimised in terms of fibre coating, extraction time, and extraction temperature. The performance of three commercially available SPME fibres, viz. 100 mum polydimethylsiloxane; 85 mum polyacrylate, PA; and 50/30 mum divinylbenzene/carboxen on polydimethylsiloxane, was evaluated and compared. The highest amounts extracted, in terms of the maximum signal recorded for the total volatile composition, were obtained with a PA coating fibre at 30 degrees C during an extraction time of 60 min with a constant stirring at 750 rpm, after saturation of the sample with NaCl (30%, w/v). More than sixty volatile compounds, belonging to different biosynthetic pathways, have been identified, including fatty acid ethyl esters, higher alcohols, fatty acids, higher alcohol acetates, isoamyl esters, carbonyl compounds, and monoterpenols/C(13)-norisoprenoids.  相似文献   

17.
B. Kolb  P. Pospisil 《Chromatographia》1977,10(12):705-711
Summary A method has been developed for the quantitative analysis of volatile compounds in solid samples. The method is based on a stepwise gas extraction of the volatiles with subsequent analysis of the extracted material and is termed discontinuous gas extraction. Any quantitative analysis requires an exhaustive extraction, which, however, is often too time-consuming for routine analysis. It is shown how the total amount of each volatile compound can be calculated from only a few extractions. Such a calculation is possible because for analytical purposes it is the information of the extraction process and not the extracted material that is needed. This method is useful for samples which are insoluble, such as certain polymers or residual solvents in printed foils, and which cannot be analyzed quantitatively by headspace gas chromatography, since no calibration solution can be prepared. It is further shown how discontinuous gas extraction can also be used to calibrate headspace analysis. Thus, both methods combine well together in that discontinuous gas extraction provides the accuracy while the headspace analysis gives convenience and speed of sample throughput, particularly if carried out with an automated headspace analyzer.  相似文献   

18.
Wu F  Gabryelski W  Froese K 《The Analyst》2002,127(10):1318-1323
A fast headspace solid-phase microextraction gas chromatography method for micro-volume (0.1 mL) samples was optimized for the analysis of haloacetic acids (HAAs) in aqueous and biological samples. It includes liquid-liquid microextraction (LLME), derivatization of the acids to their methyl esters using sulfuric acid and methanol after evaporation, followed by headspace solid-phase microextraction with gas chromatography and electron capture detection (SPME-GC-ECD). The derivatization procedure was optimized to achieve maximum sensitivity using the following conditions: esterification for 20 min at 80 degrees C in 10 microL methanol, 10 microL sulfuric acid and 0.1 g anhydrous sodium sulfate. Multi-point standard addition method was used to determine the effect of the sample matrix by comparing with internal standard method. It was shown that the effect of the matrix for urine and blood samples in this method is insignificant. The method detection limits are in the range of 1 microg L(-1) for most of the HAAs, except for monobromoacetic acid (MBAA) (3 microg L(-1)) and for monochloroacetic acid (MCAA) (16 microg L(-1)). The optimized procedure was applied to the analysis of HAAs in water, urine and blood samples. All nine HAAs can be separated in < 13 min for biological samples and < 7 min for drinking water samples, with total sample preparation and analysis time < 50 min. Analytical uncertainty can increase dramatically as the sample volume decreases; however, similar precision was observed with our method using 0.1 mL samples as with a standard method using 40 mL samples.  相似文献   

19.
《Analytical letters》2012,45(14):2257-2266
Fire accelerants such as gasoline, kerosene, and diesel have commonly been used in arson cases. Improved analytical methods involving the extraction of fire accelerants are necessary to increase sample yield and to reduce the number of uncertain findings. In this study, an analytical method based on headspace single drop microextraction (HS-SDME) followed by gas chromatography–flame ionization detection (GC-FID) has been developed for the analysis of simulated fire debris samples. Curtain fabric was used as the sample matrix. The optimized conditions were 2.5 μL benzyl alcohol microdrop exposed for 20 min to the headspace of a 10 mL aqueous sample containing accelerants placed in 15-mL sample vial and stirred at 1500 rpm. The extraction method was compared with the solvent extraction method using n-hexane for the determination of fire accelerants. The HS-SDME process is driven by the concentration difference of analytes between the aqueous phases containing the analyte and the organic phase constituting the microdrop of a solvent. The limit of detection of HS-SDME for kerosene was 1.5 μL. Overall, the HS-SDME coupled with GC-FID proved to be rapid, simple and sensitive and a good alternative method for the analysis of accelerants in fire debris samples.  相似文献   

20.
High concentration capacity headspace techniques (headspace solid-phase microextraction (HS-SPME) and headspace sorptive extraction (HSSE)) are a bridge between static and dynamic headspace, since they give high concentration factors as does dynamic headspace (D-HS), and are as easy to apply and as reproducible as static headspace (S-HS). In 2000, Chromtech (Idstein, Germany) introduced an inside-needle technique for vapour and liquid sampling, solid-phase dynamic extraction (SPDE), also known as "the magic needle". In SPDE, analytes are concentrated on a 50 microm film of polydimethylsiloxane (PDMS) and activated carbon (10%) coated onto the inside wall of the stainless steel needle (5 cm) of a 2.5 ml gas tight syringe. When SPDE is used for headspace sampling (HS-SPDE), a fixed volume of the headspace of the sample under investigation is sucked up an appropriate number of times with the gas tight syringe and an analyte amount suitable for a reliable GC or GC-MS analysis accumulates in the polymer coating the needle wall. This article describes the preliminary results of both a study on the optimisation of sampling parameters conditioning HS-SPDE recovery, through the analysis of a standard mixture of highly volatile compounds (beta-pinene, isoamyl acetate and linalool) and of the HS-SPDE-GC-MS analyses of aromatic plants and food matrices. This study shows that HS-SPDE is a successful technique for HS-sampling with high concentration capability, good repeatability and intermediate precision, also when it is compared to HS-SPME.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号