首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[5-13C,15N]Glutamine, with 1J(13C–15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20–35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.  相似文献   

2.
An INEPT-based (13)C MRS method and a cost-effective and widely available 11.7 Tesla 89-mm bore vertical magnet were used to detect dynamic (13)C isotopomer turnover from intravenously infused [U-(13)C]glucose in a 211 microL voxel located in the adult rat brain. The INEPT-based (1)H-->(13)C polarization transfer method is mostly adiabatic and therefore minimizes signal loss due to B(1) inhomogeneity of the surface coils used. High quality and reproducible data were acquired as a result of combined use of outer volume suppression, ISIS, and the single-shot three-dimensional localization scheme built in the INEPT pulse sequence. Isotopomer patterns of both glutamate C4 at 34.00 ppm and glutamine C4 at 31.38 ppm are dominated first by a doublet originated from labeling at C4 and C5 but not at C3 (with (1)J(C4C5) = 51 Hz) and then by a quartet originated from labeling at C3, C4, and C5 (with (1)J(C3C4) = 35 Hz). A lag in the transition of glutamine C4 pattern from doublet-dominance to quartet dominance as compared to glutamate C4 was observed, which provides an independent verification of the precursor-product relationship between neuronal glutamate and glial glutamine and a significant intercompartmental cerebral glutamate-glutamine cycle between neurons and glial cells.  相似文献   

3.
(13)C MRS studies at natural abundance and after intravenous 1-(13)C glucose infusion were performed on a 1.5-T clinical scanner in four subjects. Localization to the occipital cortex was achieved by a surface coil. In natural abundance spectra glucose C(3beta,5beta), myo-inositol, glutamate C(1,2,5), glutamine C(1,2,5), N-acetyl-aspartate C(1-4,C=O), creatine CH(2), CH(3), and C(C=N), taurine C(2,3), bicarbonate HCO(-)(3) were identified. After glucose infusion (13)C enrichment of glucose C(1alpha,1beta), glutamate C(1-4), glutamine C(1-4), aspartate C(2,3), N-acetyl-aspartate C(2,3), lactate C(3), alanine C(3), and HCO(-)(3) were observed. The observation of (13)C enrichment of resonances resonating at >150 ppm is an extension of previously published studies and will provide a more precise determination of metabolic rates and substrate decarboxylation in human brain.  相似文献   

4.
Three-dimensional image-selected in vivo spectroscopy (ISIS) was combined with phase-cycled (1)H-(15)N heteronuclear multiple-quantum coherence (HMQC) transfer NMR for localized selective observation of protons J-coupled to (15)N in phantoms and in vivo. The ISIS-HMQC sequence, supplemented by jump-return water suppression, permitted localized selective observation of 2-5 micromol of [(15)N(indole)]tryptophan, a precursor of the neurotransmitter serotonin, through the (15)N-coupled proton in 20-40 min of acquisition in vitro at 4.7 T. In vivo, the amide proton of [5-(15)N]glutamine was selectively observed in the brain of spontaneously breathing (15)NH(4)(+)-infused rats, using a volume probe with homogeneous (1)H and (15)N fields. Signal recovery after three-dimensional localization was 72-82% in phantoms and 59 +/- 4% in vivo. The result demonstrates that localized selective observation of (15)N-coupled protons, with complete cancellation of all other protons except water, can be achieved in spontaneously breathing animals by the ISIS-HMQC sequence. This sequence performs both volume selection and heteronuclear editing through an addition/subtraction scheme and predicts the highest intrinsic sensitivity for detection of (15)N-coupled protons in the selected volume. The advantages and limitations of this method for in vivo application are compared to those of other localized editing techniques currently in use for non-exchanging protons.  相似文献   

5.
We are applying multi-nuclear high-field (500 MHz) MR spectroscopy of metabolising whole tissue preparations of the mammalian brain to studies on individual components of convulsions, which include prolonged depolarization, metabolic deprivation, and the effects of excitotoxins. The responses of glial cells and neurones can be partially distinguished by following labelling patterns of metabolic intermediates from 13C-labelled glucose or acetate (which enters only glial cells). This approach clearly confirmed our earlier indications that the metabolic response to depolarization (40 mM extracellular K+) occurs essentially in glial cells. Some evidence for metabolic shuttling between glia and neurones was obtained from the changes in C3/C4 ratios of glutamate and glutamine, and the C2/C3 of GABA. Mechanisms for metabolic support of neurones by glia may be of importance in neuronal protection under such metabolic stress as occurs in epilepsy. Changes in free intracellular divalent cations ([Ca2+]i and [Zn2+]i) were monitored using the 19F-MRS indicator, 5FBAPTA. Large increases in [Ca2+]i and decreases in PCr were produced by excitotoxins (glutamate and NMDA), depolarization or ischaemia, but intracellular Zn2+ appeared only after exposure to the excitotoxins. The NMDA receptor blocker, MK801, removed all of the responses to NMDA, but only prevented the appearance of Zn2+ observed with glutamate. These results indicate that the damage caused to neurones by such insults as convulsions is not due simply to the presence of excessive excitotoxic glutamate.  相似文献   

6.
Abstract A seven compartment model was applied for evaluation of oral L-[1-(13)C]leucine loading tests (38 μmol/kg body wt.) in healthy volunteers. The model comprises transport and absorption in stomach and gut into a central L-leucine-compartment which is connected to a protein compartment and to the compartment of the corresponding 2-oxo acid. CO(2) release from the latter occurs in a fast and a slow compartment into the central CO(2) compartment for exhalation. Using the fmins routine of MATLAB for parameter estimation, a good agreement was obtained between calculated and actually measured kinetics of (13)C-labelled metabolites and a mean in vivo L-leucine oxidation of 0.365 ± 0.071 μmol/kg per min (n = 5) was computed. Plausibility of the model was checked by predicting in vivo leucine oxidation rates from primed continuous infusion tests (priming: L-[1-(13)C]leucine, 5 μmol/kg; NaH(13)CO(2), 1.2 μmol/kg; infusion: L-[1-(13)C]leucine, 5 μmol/kg per h). In 5 tested volunteers, the experimental L-leucine oxidation rate amounted to 0.358 ± 0.105 μmol/kg per min versus predicted 0.324±0.099 μmol/kg per min. Possible causes for some observed intraindividual variations are discussed.  相似文献   

7.
In vivo detection of carboxylic/amide carbons is a promising technique for studying cerebral metabolism and neurotransmission due to the very low RF power required for proton decoupling. In the carboxylic/amide region, however, there is severe spectral overlap between acetate C1 and glutamate C5, complicating studies that use acetate as an astroglia-specific substrate. There are no known in vivo MRS techniques that can spectrally resolve acetate C1 and glutamate C5 singlets. In this study, we propose to spectrally separate acetate C1 and glutamate C5 by a two-step J-editing technique after introducing homonuclear (13)C-(13)C scalar coupling between carboxylic/amide carbons and aliphatic carbons. By infusing [1,2-(13)C(2)]acetate instead of [1-(13)C]acetate the acetate doublet can be spectrally edited because of the large separation between acetate C2 and glutamate C4 in the aliphatic region. This technique can be applied to studying acetate transport and metabolism in brain in the carboxylic/amide region without spectral interference.  相似文献   

8.
Several existing methods permit measurement of the torsion angles phi, psi and chi in peptides and proteins with solid-state MAS NMR experiments. Currently, however, there is not an approach that is applicable to measurement of psi in the angular range -20 degree to -70 degree, commonly found in alpha-helical structures. Accordingly, we have developed a HCCN dipolar correlation MAS experiment that is sensitive and accurate in this regime. An initial REDOR driven (13)C'--(15)N dipolar evolution period is followed by the C' to C(alpha) polarization transfer and by Lee--Goldburg cross polarization recoupling of the (13)C(alpha)(1)H dipolar interaction. The difference between the effective (13)C(1)H and (13)C(15)N dipolar interaction strengths is balanced out by incrementing the (13)C--(15)N dipolar evolution period in steps that are a factor of R(R approximately omega(CH)/omega(CN)) larger than the (13)C--(1)H steps. The resulting dephasing curves are sensitive to variations in psi in the angular region associated with alpha-helical secondary structure. To demonstrate the validity of the technique, we apply it to N-formyl-[U-(13)C,(15)N] Met-Leu-Phe-OH (MLF). The value of psi extracted is consistent with the previous NMR measurements and close to that reported in diffraction studies for the methyl ester of MLF, N-formyl-[U-(13)C,(15)N]Met-Leu-Phe-OMe.  相似文献   

9.
J couplings between (13)C(alpha) and (1)H(N) across hydrogen bonds in proteins are reported for the first time, and a two- or three-dimensional NMR technique for their measurement is presented. The technique exploits the TROSY effect, i.e., the degree of interference between dipolar and chemical shift anisotropy relaxation mechanisms, for sensitivity enhancement. The 2D or 3D spectra exhibit E.COSY patterns where the splittings in the (13)CO and (1)H(N) dimensions are (1)J((13)C(alpha), (13)CO) and the desired (3h)J((13)C(alpha), (1)H(N)), respectively. A demonstration of the new method is shown for the (15)N,(13)C-labeled protein chymotrypsin inhibitor 2 where 17 (3h)J((13)C(alpha), (1)H(N)) coupling constants ranging from 0 to 1.4 Hz where identified and all of positive sign.  相似文献   

10.
Future structural investigations of proteins by solid-state CPMAS NMR will rely on uniformly labeled protein samples showing spectra with an excellent resolution. NMR samples of the solid alpha-spectrin SH3 domain were generated in four different ways, and their (13)C CPMAS spectra were compared. The spectrum of a [u-(13)C, (15)N]-labeled sample generated by precipitation shows very narrow (13)C signals and resolved scalar carbon-carbon couplings. Linewidths of 16-19 Hz were found for the three alanine C(beta )signals of a selectively labeled [70% 3-(13)C]alanine-enriched SH3 sample. The signal pattern of the isoleucine, of all prolines, valines, alanines, and serines, and of three of the four threonines were identified in 2D (13)C-(13)C RFDR spectra of the [u-(13)C, (15)N]-labeled SH3 sample. A comparison of the (13)C chemical shifts of the found signal patterns with the (13)C assignment obtained in solution shows an intriguing match.  相似文献   

11.
We describe a novel (13)C enriched precursor molecule, sodium 1-(13)C acetylenedicarboxylate, which after hydrogenation by PASADENA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized (13)C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized (13)C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized (13)C sodium succinate, contained significant concentrations of the injected substrate, (13)C sodium succinate, together with (13)C maleate and succinate metabolites 1-(13)C-glutamate, 5-(13)C-glutamate, 1-(13)C-glutamine and 5-(13)C-glutamine. The (13)C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood-brain barrier. These ex vivo results indicate that hyperpolarized (13)C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in (13)C MR spectral-spatial images.  相似文献   

12.
In this work the feasibility of measuring neuronal-glial metabolism in rat brain in vivo using co-infusion of [1,6-13C2]glucose and [1,2-13C2]acetate was investigated. Time courses of 13C spectra were measured in vivo while infusing both 13C-labeled substrates simultaneously. Individual 13C isotopomers (singlets and multiplets observed in 13C spectra) were quantified automatically using LCModel. The distinct 13C spectral pattern observed in glutamate and glutamine directly reflected the fact that glucose was metabolized primarily in the neuronal compartment and acetate in the glial compartment. Time courses of concentration of singly and multiply-labeled isotopomers of glutamate and glutamine were obtained with a temporal resolution of 11 min. Although dynamic metabolic modeling of these 13C isotopomer data will require further work and is not reported here, we expect that these new data will allow more precise determination of metabolic rates as is currently possible when using either glucose or acetate as the sole 13C-labeled substrate.  相似文献   

13.
In clinical 13C infusion studies, broadband excitation of 200 ppm of the human brain yields 13C MR spectra with a time resolution of 2-5 min and generates up to 2000 metabolite peaks over 2h. We describe a fast, automated, observer-independent technique for processing [1H-decoupled] 13C spectra. Quantified 13C spectroscopic signals, before and after the administration of [1-13C]glucose and/or [1-13C]acetate in human subjects are determined. Stepwise improvements of data processing are illustrated by examples of normal and pathological results. Variation in analysis of individual 13C resonances ranged between 2 and 14%. Using this method it is possible to reliably identify subtle metabolic effects of brain disease including Alzheimer's disease and epilepsy.  相似文献   

14.
Following intravenous injections of [15N]glycine (97 at.% 15N, 400 mg in 1.5 ml isotonic saline) to Lewis rats several organs were excised. The time courses of the 15N NMR spectral (40.55 MHz) were measured at 37°C after cold (4°C) or warm (37°C) storage. The application of the Overhauser POE technique yielded signal enhancement by a factor of -2.7 and -1.3 in sceletal and heart muscle, respectively, at 37°C, but no enhancement in liver and kidney.

In the time course of liver measurements at 37°C, intermediate metabolic products of glycine were observed, such as serine, glutamine, alanine, and tryptophane.  相似文献   

15.
Glutamate plays a double role in 13C-nuclear magnetic resonance (NMR) spectroscopic determination of glucose metabolism in the brain. Bidirectional exchange between initially unlabeled glutamate and labeled α-ketoglutarate, formed from pyruvate via pyruvate dehydrogenase (PDH), indicates the rate of energy metabolism in the tricarboxylic acid (VTCA) cycle in neurons (VPDH, n) and, with additional computation, also in astrocytes (VPDH, g), as confirmed using the astrocyte-specific substrate [13C]acetate. Formation of new molecules of glutamate during increased glutamatergic activity occurs only in astrocytes by combined pyruvate carboxylase (VPC) and astrocytic PDH activity. VPDH, g accounts for ∼15% of total pyruvate metabolism in the brain cortex, and VPC accounts for another ∼10%. Since both PDH-generated and PC-generated pyruvates are needed for glutamate synthesis, ∼20/25 (80%) of astrocytic pyruvate metabolism proceed via glutamate formation. Net transmitter glutamate [γ-aminobutyric acid (GABA)] formation requires transfer of newly synthesized α-ketoglutarate to the astrocytic cytosol, α-ketoglutarate transamination to glutamate, amidation to glutamine, glutamine transfer to neurons, its hydrolysis to glutamate and glutamate release (or GABA formation). Glutamate-glutamine cycling, measured as glutamine synthesis rate (Vcycle), also transfers previously released glutamate/GABA to neurons after an initial astrocytic accumulation and measures predominantly glutamate signaling. An empirically established ∼1/1 ratio between glucose metabolism and Vcycle may reflect glucose utilization associated with oxidation/reduction processes during glutamate production, which together with associated transamination processes are balanced by subsequent glutamate oxidation after cessation of increased signaling activity. Astrocytic glutamate formation and subsequent oxidative metabolism provide large amounts of adenosine triphosphate used for accumulation from extracellular clefts of neuronally released K+ and glutamate and for cytosolic Ca2+ homeostasis.  相似文献   

16.
It is important to know the structure of silk I (Bombyx mori silk structure before spinning in the solid state) in order to understand the mechanism of fiber formation at the atomic level. In this study, 15N-dephased, 13C-observe REDOR has been carried out to determine the atomic distance of intra-molecular hydrogen bond between the 13C=O carbon of the 14th Gly residue and the 15N nitrogen of the 17th Ala residue of (AG)(6)A[1-13C]GAG[15N]AG(AG)(6) with silk I form after removal of the effect of MAS frequency on the re-coupling. The distance was determined to be 4.3A, which confirmed the intra-molecular hydrogen bonding formation between these two atomic sites.  相似文献   

17.
We present novel pulse sequences for magic-angle-spinning solid-state NMR structural studies of (13)C,(15)N-isotope labeled proteins. The pulse sequences have been designed numerically using optimal control procedures and demonstrate superior performance relative to previous methods with respect to sensitivity, robustness to instrumental errors, and band-selective excitation profiles for typical biological solid-state NMR applications. Our study addresses specifically (15)N to (13)C coherence transfers being important elements in spectral assignment protocols for solid-state NMR structural characterization of uniformly (13)C,(15)N-labeled proteins. The pulse sequences are analyzed in detail and their robustness towards spin system and external experimental parameters are illustrated numerically for typical (15)N-(13)C spin systems under high-field solid-state NMR conditions. Experimentally the methods are demonstrated by 1D (15)N-->(13)C coherence transfer experiments, as well as 2D and 3D (15)N,(13)C and (15)N,(13)C,(13)C chemical shift correlation experiments on uniformly (13)C,(15)N-labeled ubiquitin.  相似文献   

18.
A simple, rapid and cost-effective laboratory method is described for labelling terrestrial slugs simultaneously with 13C and 15N. Slugs (Deroceras reticulatum) were provided with a mixture of [U-13C6]glucose, 15N-enriched lettuce powder, and wheat bran. Assimilation efficiencies for 13C (24.2%) and 15N (27.4%) were not affected by feeding regimes offering ad libitum or restricted access to unlabelled food during the labelling period. Body tissue was significantly more highly enriched in 13C but significantly less in 15N than cutaneous mucus after 15 days.  相似文献   

19.
Using residual chemical shift anisotropies (RCSAs) measured in a weakly aligned stem-loop RNA, we examined the carbon chemical shift anisotropy (CSA) tensors of nucleobase adenine C2, pyrimidine C5 and C6, and purine C8. The differences between the measured RCSAs and the values back-calculated using three nucleobase carbon CSA sets [D. Stueber, D.M. Grant, 13C and 15N chemical shift tensors in adenosine, guanosine dihydrate, 2'-deoxythymidine, and cytidine, J. Am. Chem. Soc. 124 (2002) 10539-10551; D. Sitkoff, D.A. Case, Theories of chemical shift anisotropies in proteins and nucleic acids, Prog. NMR Spectrosc. 32 (1998) 165-190; R. Fiala, J. Czernek, V. Sklenar, Transverse relaxation optimized triple-resonance NMR experiments for nucleic acids, J. Biomol. NMR 16 (2000) 291-302] reported previously for mononucleotides (1.4 Hz) is significantly smaller than the predicted RCSA range (-10-10 Hz) but remains larger than the RCSA measurement uncertainty (0.8 Hz). Fitting of the traceless principal CSA values to the measured RCSAs using a grid search procedure yields a cytosine C5 CSA magnitude (CSAa=(3/2.(delta11(2)+delta22(2)+delta33(2)))1/2=173+/-21 ppm), which is significantly higher than the reported mononucleotide values (131-138 ppm) and a guanine C8 CSAa (148+/-13 ppm) that is in very good agreement with the mononucleotide value reported by solid-state NMR [134 ppm, D. Stueber, D.M. Grant, 13C and (15)N chemical shift tensors in adenosine, guanosine dihydrate, 2'-deoxythymidine, and cytidine, J. Am. Chem. Soc. 124 (2002) 10539-10551]. Owing to a unique sensitivity to directions normal to the base plane, the RCSAs can be translated into useful long-range orientational constraints for RNA structure determination even after allowing for substantial uncertainty in the nucleobase carbon CSA tensors.  相似文献   

20.
In this publication, we introduce a version of the rotational resonance width experiment with a homogeneously broadened matching condition. The increase in the bandwidth is achieved by the reduction of the proton decoupling power during mixing, which results in the reduction of zero-quantum relaxation, and broadens the rotational resonance condition. We show that one can achieve recoupling of the carbonyl-aliphatic side chain dipolar interactions band selectively, while avoiding the recoupling of strongly interacting C'-Calpha and C'-Cbeta spin pairs. The attenuation of the multi-spin effects in the presence of short zero-quantum relaxation enables a two-spin approximation to be employed for the analysis of the experimental data. The systematic error introduced by this approximation is estimated by comparing the results with a three-spin simulation. The experiment is demonstrated in [U-(13)C,(15)N]N-acetyl-L-Val-L-Leu dipeptide, where 11 distances, ranging from 2.5 to 6 A, were measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号