首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Metal(II) chelates of Schiff bases derived from the condensation of 1,2,3,5,6,7,8,8a-octahydro-3-oxo-N,1-diphenyl-5-(phenylmethylene)-2-naphthalenecarboxamide with o-aminophenol (KAAP), o-aminothiophenol (KAAT) or o-aminobenzoic acid (KAAB) have been prepared and characterized. The complexes are of the type [M(N2X)]2 for M = CuII and M(NX)2·nH2O for M = NiII, CoII and VOII (X = phenolic oxygen, thiophenolic sulphur or carboxylic oxygen; n = 0 or 2). Conductivity data indicate that the complexes are non-ionic. The Schiff bases behave as dibasic tridentate ligands in their copper(II) complexes and as monobasic bidentate ligands in their nickel(II), cobalt(II) and vanadyl(II) complexes. The subnormal magnetic moments of the copper(II) complexes are ascribed to an antiferromagnetic exchange interaction arising from dimerization. Nickel(II) and cobalt(II) complexes are trans octahedral whereas vanadyl(II) complexes are square pyramidal  相似文献   

2.
Summary A series of metal complexes with new tridentate Schiff base derived from salicylaldehyde and furfuraldehyde with o-phenyldiamine have been prepared and characterised by physical and chemical methods. Electronic spectra, room temperature magnetic moment values, e.p.r. and X-ray photoelectron spectroscopy studies suggest an octahedral geometry for all the complexes, where low molar conductance values are in accord with their non-electrolytic nature. The thermal stability of the complexes is discussed and the ligand-to-metal bonding modes discussed.  相似文献   

3.
A series of Co(II), Ni(II), and Cu(II) complexes ML?·?3H2O have been synthesized with Schiff bases derived from 3-substituted-4-amino-5-mercapto-1,2,4-triazole and 5-formyl-6-hydroxy coumarin. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMF indicate that the complexes are non-electrolytes. In view of analytical, spectral (infrared, UV-Vis, ESR, TG, and FAB-mass), and magnetic studies, it has been concluded that all the metal complexes possess octahedral geometry in which ligand is coordinated to metal through azomethine nitrogen, phenolic oxygen, and sulfur via deprotonation. The Schiff bases and their complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi) and antifungal activities (Aspergillus niger, Aspergillus flavus, and Cladosporium) by the minimum inhibitory concentration method. DNA cleavage is studied by agarose gel electrophoresis.  相似文献   

4.
A novel series of 16-membered binuclear complexes of octaazatetraimine ligand, [M = MnII, CoII, NiII, CuII and ZnII; X = Cl or NO3] have been synthesized by metal template condensation reactions of o-phenylenediamine with N,N′-diacetylhydrazine in 1:1:1 molar ratio in methanol. The proposed stoichiometry and the bonding of the macrocyclic moiety to metal ions along with the overall stereochemistry have been derived from the results of elemental analyses, magnetic susceptibility, conductivity data and the spectral data revealed from FT-IR, , ESI mass, UV–visible studies. An octahedral geometry has been envisaged for MnII, CoII, and NiII complexes while a slight distortion in octahedral geometry has been noticed for CuII complexes. The low conductivity data of all the complexes suggest their non-ionic nature.  相似文献   

5.
A series of Co(II), Ni(II), and Cu(II) complexes have been synthesized with Schiff bases (H2LI and H2LII) derived from 8-formyl-7-hydroxy-4-methylcoumarin or 5-formyl-6-hydroxycoumarin and o-aminophenol. Structures have been proposed from elemental analyses, spectral (IR, UV-Vis, FAB-mass, and Fluorescence), magnetic, and thermal studies. The measured low molar conductance values in DMF indicate that the complexes are non-electrolytes. Elemental analyses indicate ML · 3H2O [M = Co(II), Ni(II), and Cu(II)] stoichiometry. Spectroscopic studies suggest coordination through azomethine nitrogen, phenolic oxygen of o-aminophenol, and the coumarin via deprotonation. The Schiff bases and their complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi) and antifungal (Aspergillus niger, Aspergillus flavus, and Cladosporium) activities by minimum inhibitory concentration (MIC) method. The redox behavior of the complexes was investigated using cyclic voltammetry (CV).  相似文献   

6.
Co(II), Ni(II), and Cu(II) complexes, ML2 · 2H2O have been synthesized with Schiff bases derived from m-substituted thiosemicarbazides and 2-methoxy benzaldehyde. The complexes are soluble in DMF/DMSO and non-electrolytes. From analytical, spectral (IR, UV-Vis, ESR, and FAB-mass), magnetic and thermal studies octahedral geometry is proposed for the complexes. The redox behavior of the complexes was investigated using cyclic voltammetry. The Schiff bases and their metal complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi) and antifungal activities (Aspergillus niger, Aspergillus flavus, and Cladosporium) by Minimum Inhibitory Concentration method. DNA cleavage is studied by agarose gel electrophoresis method.  相似文献   

7.
Summary The coordination behaviour of Schiff bases derived from the condensation of some of the heterocyclic aldehydes with hydrazine hydrate, towards FeII, PdII and PtII, has been studied. The 1:1 and 1:2 molar reactions of MCl2 with the Schiff bases result in coloured solids which have been characterised by elemental analysis, conductance and magnetic measurements. The mode of bonding has been deduced from i.r. and n.m.r. (1H and13C) studies.  相似文献   

8.
A series of transition metal complexes of the type [M(ah)3](ClO4)2 (16) [M = MnII, FeII, CoII, NiII, CuII and ZnII, ah = acetylhydrazine] have been prepared by the reaction of M(ClO4)2 · 6H2O with acetylhydrazine formed in situ by the reaction of hydrazine hydrate and acetylsalicylic acid methyl ester. The chelating behaviour of acetylhydrazine and overall geometry of these complexes have been spectroscopically investigated by means of FT-IR, 1H-n.m.r. and electronic spectral techniques, as well as by elemental analysis data, molar conductance values and magnetic susceptibility measurements. Single X-ray structure determination of complex (4) revealed three acetylhydrazine ligands coordinated to nickel ion in a bidentate manner maintaining an octahedral environment. In all other complexes too, an octahedral geometry has been proposed on the basis of results obtained by various physico-chemical studies.  相似文献   

9.
A series of new Schiff base complexes of FeIII, CoII, NiII and CuII containing Ph3P has been prepared and characterised. The Schiff bases have been prepared by the condensation of salicylaldehyde and naphthaldehyde with the appropriate aniline. The complexes have been characterised by analytical, spectral (i.r., electronic, magnetic, e.p.r., 1H-n.m.r.) and electrochemical studies. The new complexes have been used as catalysts for aromatic coupling reactions. Higher catalytic activity has been observed for NiII compared to the other complexes.  相似文献   

10.
Schiff bases derived from 4-aminomethylcarbostyril and their transition metal complexes with CoII, NiII, CuII and ZnII have been synthesized and characterized by elemental analysis, molar conductance, magnetic susceptibilities electronic, IR, PMR, ESR, FAB-Mass and thermal studies. From the above spectral studies it is concluded that the ligands of 4-substituted carbostyril Schiff bases, viz, salicylidene 4-aminomethylcarbostyril (SAMC); o-vanillinsalicylidene 4-aminomethylcarbostyril (VAMC) and 5′ chlorosalicylidene 4-aminomethylcarbostyril (CSAMC) act as bidenate molecules coordinating through azomethine nitrogen and phenolic oxygen. The ligands and their metal complexes have been screened in vitro for antibacterial, antifungal and antitumor activity. The results indicate that the biological activity increases on complexation. The CuII complexes of the above ligands show greater inhibitory action towards the P388/s tumor cells at lower concentrations.  相似文献   

11.
CoII, NiII and CuII chloride complexes with acetamidrazone derivatives (L 1 )–(L 8 ) have been prepared, by reacting the corresponding metal chloride with the ligand in a 1:2 ratio, and characterised by chemical analysis and physical measurements. The ligand behaviour and the geometry have been assigned on the basis of i.r. spectroscopy, electronic reflectance spectra and molar conductivity values and only, where possible, the geometry has been confirmed as octahedral by X-ray structure determination. Complexes cytotoxicity on a human cellular line of adenocarcinoma was also tested. Three of the complexes present a weak cytotoxicity in vitro.  相似文献   

12.
Five new cobalt(II), nickel(II), and copper(II) complexes with Schiff bases have been synthesized. The Schiff bases have been prepared by the condensation of monopotassium 1-amino-8-hydroxynaphthalene-2,4-disulfonate with benzoin (L1) or 2-hydroxy-1-naphthaldehyde (L2). The compounds have been identified and studied by elemental analysis, X-ray diffraction, thermogravimetry, measurements of magnetic susceptibility and electrical conductivity, and IR, ESR, and diffuse reflectance spectroscopy. The dimeric (with oxo bridges) structure of the Co(II) complex with L1 has been additionally confirmed by the EXAFS method.  相似文献   

13.
Co(II), Ni(II), Cu(II), and Zn(II) complexes have been prepared with Schiff bases derived from 3-formyl-2-mercaptoquinoline and substituted anilines. The prepared Schiff bases and chelates have been characterized by elemental analysis, molar conductance, magnetic susceptibilities, electronic, IR, 1H-NMR, ESR, cyclic voltammetry, FAB-mass, and thermal studies. The complexes have stoichiometry of the type ML2 · 2H2O coordinating through azomethine nitrogen and thiolate sulfur of 2-mercapto quinoline. An enhancement in fluorescence has been noticed in the Zn(II) complexes whereas quenching occurred in the other complexes. The ligands and their metal complexes have been screened in vitro for antibacterial and antifungal activities by MIC methods with biological activity increasing on complexation. Cu(II) complexes show greater bacterial than fungicidal activities. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties of the ligands and their corresponding complexes. Only four compounds have exhibited potent cytotoxic activity against Artemia salina; the other compounds were almost inactive for this assay.  相似文献   

14.
A series of Co(II), Ni(II) and Cu(II) complexes, [ML?·?2H2O] of Schiff bases derived from 4,4-diaminodiphenyl sulfone (dapsone) and 8-formyl-7-hydroxy-4-methylcoumarin/5-formyl-6-hydroxycoumarin have been synthesized. From analytical, spectral (IR, NMR, UV-Vis, ESR and FAB mass), and magnetic studies it has been concluded that the metal complexes possess octahedral geometry and are non-electrolytes. The redox behavior of the metal complexes is investigated by cyclic voltammetry. The Schiff bases and their metal complexes have been screened for antibacterial (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella, Salmonella, Streptococcus, Staphylococcus proteus) and antifungal activities (Fusarium, Candida, Rhizopus, Penicillium chrysogenum and Aspergillus niger) by the minimum inhibitory concentration method. The anthelmintic activity of the ligands and their metal complexes against earthworms was investigated. The DNA cleavage study was done by agarose gel electrophoresis. Anti-inflammatory activity studies showed the test compounds are comparable to the standard drug diclofenac sodium.  相似文献   

15.
Ni(II), Cu(II), and Zn(II) complexes with bidentate Schiff bases derived from the condensation reaction of 5-chlorosalicylaldehyde, 5-nitrosalicylaldehyde, and 3,5 ditertiarybutyl-2-hydroxy benzaldehyde with tryptamine, have been reported. The ligands and complexes were characterized by elemental analysis, IR, 1H NMR and UV–Vis spectroscopy as well as single crystal X-ray structure analysis whenever possible. The complexes were found to have the general formula [M(L)2]. Spectral studies reveal that these Schiff bases were acting as bidentate ligands and co-ordinating to the metal center through deprotonated phenolate oxygen and azomethine nitrogen atoms. The Zn(II) complexes establish a tetrahedral geometry in a 1:2 metal to ligand stoichiometry, whereas a square planar geometry was proposed for the nickel and copper complexes, slightly distorted in the case of the latter.The antiulcer activity of 5-chlorosalicylaldehyde derivative and its nickel and copper complexes were evaluated in ethanol-induced gastric mucosal injury in rats. This Schiff base and its complexes promote ulcer protection as ascertained by the comparative decrease in ulcer areas, and inhibition of edema and leucocyte infiltration of the submucosal layer.  相似文献   

16.
Summary Complexes of CoII, NiII, CuII, ZnII, CdII, HgII and UO 2 II with benzil bis(4-phenylthiosemicarbazone), H2BPT, have been synthesized and their structures assigned based on elemental analysis, molar conductivity, magnetic susceptibility and spectroscopic measurements. The i.r. spectra suggest that the ligand behaves as a binegative quadridentate (NSSN) (CoII, CuII, HgII and UO 2 II complexes) or as a binegative quadridentate-neutral bidentate chelating agent (NiII, ZnII and CdII complexes). Octahedral structures for the CoII and NiII complexes and square-planar structure for the CuII complex are suggested on the basis of magnetic and spectral evidence. The crystal field parameters (Dq, B and B) for the CoII complex are calculated and agree fairly well with the values reported for known octahedral complexes. The ligand can be used for the microdetermination of NiII ions of concentration in the 0.4–6×10–4 mol l–1 range and the apparent formation constant for the species generated in solution has also been calculated.  相似文献   

17.
New Schiff bases have been synthesized from benzofuran-2-carbohydrazide and benzaldehyde, [BPMC] or 3,4-dimethoxybenzaldehyde, [BDMeOPMC]; complexes of the type MLX2, where M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II), L = BPMC or BDMeOPMC and X = Cl, have been prepared. Structures have been elucidated on the basis of elemental analysis, conductance measurements, magnetic properties, spectral studies i.e., 1H NMR, electronic, ESR and IR studies show that the Schiff bases are bidentate through the azomethine nitrogen and oxygen of the carbonyl. We propose tentative structures for all of these complexes. The antifungal and antibacterial activities of the ligands and their metal complexes have been screened against fungi Aspergillus niger and Aspergillus fumigatus and against bacteria Escherichia coli and S. aurious.  相似文献   

18.
Summary A series of metal (Cu, Ni, Zn, Cd and Pd) complexes of a Schiff base ligand derived from S-benzyldithiocarbazate and p-nitrobenzaldehyde were prepared and characterized. The Schiff base acts as a single negatively-charged bidentate ligand forming stable neutral metal complexes. Magnetic and spectroscopic data suggest a square planar structure for the CuII, NiII and PdII chelates. Single X-ray diffraction analysis of the NiII chelate established that the Schiff base loses a proton from its tautomeric thiol form and coordinates to the metal via the thiolato sulfur and -nitrogen. The geometry around NiII is square planar with two equivalent Ni-N and Ni-S bonds; the two nitrobenzyl rings and the coordination plane are almost isoplanar, giving a delocalized electronic system.  相似文献   

19.
Summary Several new complexes of the title ligand (H2MPTS) with CoII, NiII, CuII, and CdII have been prepared. Structural assignments of the complexes have been made based on elemental analysis, molar conductivity, magnetic moment and spectral (i.r.,1H n.m.r., reflectance) studies. The compounds are non-conductors in dimethylsulphoxide. The neutral molecule is coordinated to the metal(II) sulphate as a bidentate ligandvia the two carbonyl groups. The ligand reacts with the metal(II) chlorides with the liberation of two hydrogen ions, behaving as a bianionic quadridentate (NONO) donor. Enolization is confirmed by the pH-titration of H2 MPTS and its metal(II) complexes against NaOH. A distorted octahedral structure is proposed for the CuII complex, while a square planar structure is suggested for both CoII and NiII complexes. The stoichiometry of the complexes formed in EtOH and buffer solutions, their apparent formation constants and the ranges for obedience to Beer's law are reported for CoII, NiII and CuII ions. The ligand pK values are calculated. The antimicrobial activity of H2 MPTS and its CoII, NiII, CuII and MnII complexes is demonstrated.  相似文献   

20.
Transition metal complexes of type M(L)2(H2O)x were synthesized, where L is deprotonated Schiff base 2,4‐dihalo‐6‐(substituted thiazol‐2‐ylimino)methylphenol derived from the condensation of aminothiazole or its derivatives with 2‐hydroxy‐3‐halobenzaldehyde and M = Co2+, Ni2+, Cu2+ and Zn2+ (x = 0 for Cu2+ and Zn2+; x = 2 for Co2+ and Ni2+). The synthesized Schiff bases and their metal complexes were thoroughly characterized using infrared, 1H NMR, electronic and electron paramagnetic resonance spectroscopies, elemental analysis, molar conductance and magnetic susceptibility measurements, thermogravimetric analysis and scanning electron microscopy. The results reveal that the bidentate ligands form complexes having octahedral geometry around Co2+ and Ni2+ metal ions while the geometry around Cu2+ and Zn2+ metal ions is four‐coordinated. The geometries of newly synthesized Schiff bases and their metal complexes were fully optimized in Gaussian 09 using 6–31 + g(d,p) basis set. Fluorescence quenching data reveal that Zn(II) and Cu(II) complexes bind more strongly to bovine serum albumin in comparison to Co(II) and Ni(II) complexes. The ligands and their complexes were evaluated for in vitro antibacterial activity against Escherichia coli ATCC 25922 (Gram negative) and Staphylococcus aureus ATCC 29213 (Gram positive) and cytotoxicity against lever hepatocellular cell line HepG2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号