首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
Focused ion beam implantation of 30‐keV Ga+ ions in single‐crystalline Si and Ge was investigated by SIMS, using Cs+ primary ions for sputtering. Nine different implantation fluences ranging from 1 × 1013 to 1 × 1017 Ga+‐ions/cm2 were used, with implanted areas of 40 × 40 µm2. The Ga concentration distributions of these implants were determined by SIMS depth profiling. Such 30‐keV Ga implantations were also simulated by a dynamic Monte‐Carlo code that takes into account the gradual change of the near‐surface composition due to the Ga incorporation. In both approaches, an essentially linear increase of the Ga peak concentrations with fluence is found up to ~1 × 1016cm?2; for higher fluences, the Ga content approaches a saturation level which is reached at about (1–2) × 1017cm?2. The measured and simulated peak concentrations of the Ga distributions are in good agreement. The most probable ranges obtained from the experiments correspond closely with the respective values from the simulations. The surface morphology caused by Ga+ implantation was investigated by atomic force microscopy (AFM). The AFM data indicate that for low fluences (<3 × 1015cm?2) the surface within the implanted areas is growing outward (i.e. is swelling). For increasingly higher fluences, sputter‐induced erosion of the surface becomes dominant and distinct craters are formed for fluences above ~1 × 1016cm?2. At the boundary of the implanted region a wall‐like structure is found to form upon Ga implantation; its height is growing with increasing fluence, reaching a value of ~15 nm at 1 × 1017 Ga+‐ions/cm2. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Fibrinogen adsorption on gold and platinum surfaces has been studied with electron spectroscopy for chemical analysis (ESCA), secondary ion mass spectrometry (SIMS), 125I labeling, and scanning tunneling microscopy (STM). Stable images of single molecules have been obtained, but are rare. ESCA, SIMS, and labeling studies confirm that absorbed fibrinogen is present on samples at monolayer and submonolayer coverages even when STM images show only a bare substrate. Imaging is more reproducible at high coverages at which single molecules cannot be resolved. Possible explanations for the failure of STM to observe adsorbed fibrinogen molecules are discussed.  相似文献   

3.
The effect of Xe+ bombardment on the surface morphology of four different polymers, polystyrene (PS), poly(phenylene oxide), polyisobutylene, and polydimethylsiloxane, was investigated in ion energy and fluence ranges of interest for secondary ion mass spectrometry depth‐profiling analysis. Atomic force microscopy (AFM) was applied to analyze the surface topography of pristine and irradiated polymers. AFM analyses of nonirradiated polymer films showed a feature‐free surface with different smoothness. We studied the influence of different Xe+ beam parameters, including the incidence angle, ion energy (660–4000 eV), current density (0.5 × 102 to 8.7 × 102 nA/cm2), and ion fluence (4 × 1014 to 2 × 1017 ion/cm2). Xe+ bombardment of PS with 3–4 keV at a high current density did not induce any change in the surface morphology. Similarly, for ion irradiation with lower energy, no surface morphology change was found with a current density higher than 2.6 × 102 nA/cm2 and an ion fluence up to 4 × 1016 ion/cm2. However, Xe+ irradiation with a lower current density and a higher ion fluence led to topography development for all of the polymers. The roughness of the polymer surface increased, and well‐defined patterns appeared. The surface roughness increased with ion irradiation fluence and with the decrease of the current density. A pattern orientation along the beam direction was visible for inclined incidence between 15° and 45° with respect to the surface normal. Orientation was not seen at normal incidence. The surface topography development could be explained on the basis of the balance between surface damage and sputtering induced by the primary ion beam and redeposition–adsorption from the gas phase. Time‐of‐flight secondary ion mass spectrometry analyses of irradiated PS showed strong surface modifications of the molecular structure and the presence of new material. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 314–325, 2001  相似文献   

4.
Textile materials with engineered nanoparticles (ENPs) have excellent properties as they are antibacterial, antimicrobial, water resistant and protective. The textile industry has recognized the importance and the advantages of ENPs, so they comprise one of the fastest developing branches of processing.The most important sources of ENPs released to the environment from textiles are textile-industry wastewaters and waters from large hospital or hotel laundries. In addition, waste textile materials coated with ENPs present a threat to the environment, if such materials are not properly handled and disposed of after use.Currently, the toxicity and the potential harm of ENPs widely applied on textiles are not thoroughly investigated and/or eliminated. Consequently, there is an urgent need to define the most appropriate analytical methods for monitoring ENPs on textiles.This review presents the most important techniques for monitoring ENPs on textile materials and in textile-wastewater samples, from the perspective of protecting the environment and human health.  相似文献   

5.
6.
The past decades have witnessed enormous technological improvements towards the development of simple, cost-effective and accurate rapid diagnostic tests for detection and identification of infectious pathogens. Among them is dengue virus, the etiologic agent of the mosquito-borne dengue disease, one of the most important emerging infectious pathologies of nowadays. Dengue fever may cause potentially deadly hemorrhagic symptoms and is endemic in the tropical and sub-tropical world, being also a serious threat to temperate countries in the developed world. Effective diagnostics for dengue should be able to discriminate among the four antigenically related dengue serotypes and fulfill the requirements for successful decentralized (point-of-care) testing in the harsh environmental conditions found in most tropical regions. The accurate identification of circulating serotypes is crucial for the successful implementation of vector control programs based on reliable epidemiological predictions. This paper briefly summarizes the limitations of the main conventional techniques for biomolecular diagnosis of dengue disease and critically reviews some of the most relevant biosensors and rapid diagnostic tests developed, implemented and reported so far for point-of-care testing of dengue infections. The invaluable contributions of microfluidics and nanotechnology encompass the whole paper, while evaluation concerns of rapid diagnostic tests and foreseen technological improvements in this field are also overviewed for the diagnosis of dengue and other infectious and tropical diseases as well.  相似文献   

7.
In the present paper, a critical overview of the most commonly used techniques for the characterization and the determination of carbon nanotubes (CNTs) is given on the basis of 170 references (2000–2014). The analytical techniques used for CNT characterization (including microscopic and diffraction, spectroscopic, thermal and separation techniques) are classified, described, and illustrated with applied examples. Furthermore, the performance of sampling procedures as well as the available methods for the determination of CNTs in real biological and environmental samples are reviewed and discussed according to their analytical characteristics. In addition, future trends and perspectives in this field of work are critically presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号