首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Superconducting tunnel junction (STJ) array detectors with a new design, which has a minimum junction edge coverage of an SiO2 insulation, passivation layer and an asymmetric tunnel junction layer structure, have been fabricated for a soft X‐ray region between 100 eV and 1 keV. The sensitive area was patterned by removing the SiO2 deposition layer by a lift‐off technique that ensured no contamination layer on the top Nb electrode surface. The width of the passivation rim was as narrow as 0.5 µm at the junction edge. The clean Nb surface and the narrow SiO2 rim resulted in almost no artifact photon events in a low‐energy region. The asymmetric layer design is effective in solving a problem of double peak response to monochromatic X‐rays, which is commonly observed in STJ detectors. The performance of a 100 pixel array detector was investigated by the fluorescent X‐ray analysis of oxides and nitrides: an energy resolution of about 30 eV for the total absorption of the Kα lines of oxygen and nitrogen. We plan to realize an energy resolution of better than 20 eV and a counting rate of over 1 Mcps for fluorescence‐yield X‐ray absorption spectroscopy for light trace elements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Work towards developing a prototype GaAs based X‐ray fluorescence spectrometer focusing on the detector‐preamplifier system for in situ characterisation of deep seabed minerals is presented. Such an instrument could be useful for marine geology and provide insight into hydrothermal processes. It would also be beneficial for deep sea mining applications. The GaAs photodiode was electrically characterised at 4 °C (ambient seawater temperature) and 33 °C. A system energy resolution (full width at half maximum) at 5.9 keV of 580 eV at 4°C, limited by the dielectric noise, broadening to 680 eV at 33°C, was recorded. The spectral performance of the system was characterised across the energy range 4.95 keV to 21.17 keV, at 33°C, using high‐purity X‐ray fluorescence calibration samples excited by a Mo target X‐ray tube. The charge output from the system was found to be linear with incident photon energy. The energy resolution was found to broaden from 695 eV at 4.95 keV to 735 eV at 21.17 keV, attributed to the increasing Fano noise with energy. The same X‐ray tube was used to fluoresce an unprepared manganese nodule (revealing the presence of Mn, Fe, Ni, Cu, Zn, Pb, Sr, and Mo) and a black smoker hydrothermal vent sample (containing Fe, Co, Ni, Cu, Zn, Pb, and Mo). Such a spectrometer may also find use in future space missions to study the hydrothermal vents that are believed to exist in the oceans of Jupiter's moon Europa.  相似文献   

3.
《X射线光谱测定》2004,33(4):256-261
Silicon drift detectors (SDDs) are used as energy‐dispersive detectors for x‐ray fluorescence analysis in commercial systems. Because of the low capacitance of the readout anode, achieved by the device topology and by the integration of the first FET on the chip, noise contributions are very small, allowing good energy resolution at low shaping times and high count rates. Typical energy resolution is better than 147 eV FWHM at 5.9 keV (Mn Kα), at ?10°C. This allows the chips to be cooled with a thermoelectric element, avoiding the use of liquid nitrogen. SDD chips are produced at MPI‐Halbleiterlabor in Munich with different geometries and areas. Recently, a new SDD has been developed which places the anode and the integrated JFET at the margin of the chip where it can easily be shielded from direct irradiation with the use of a collimator. The new layout allows the design of a readout anode with smaller area and therefore reduces the capacitance to values of about 120 fF compared with 200–250 fF with standard SDDs. The result is an improvement in energy resolution down to 128 eV at ?15°C. A second effect is the enhancement of the peak‐to‐background values to 6000 homogeneously across the active area of the detector. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
《X射线光谱测定》2003,32(1):60-63
Kβ/Kα x‐ray intensity ratios of some Br and I compounds were studied. The samples were excited by 59.5 keV γ‐rays emitted from an Am‐241 radioisotope source and characteristic K x‐rays emitted from the samples were counted by means of an Si(Li) detector which has a resolution 155 eV at 5.9 keV. The experimental values were compared with the calculated theoretical values for elemental Br and I. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The energy spectrum analysis of X‐ray intensities with semiconductor detectors is often difficult because their energy resolution is usually not good enough to separate the different X‐ray lines. Metallic magnetic calorimeters (MMCs) can be an alternative; they can offer both high energy resolution and high intrinsic detection efficiency from 0 to 100 keV. MMCs are thermal detectors; that is to say, the energy of each absorbed photon is measured as a temperature elevation. At very low temperature, typically few tens of mK, a very large pulse height‐to‐noise ratio can be obtained that is an essential condition for high energy resolution. We are involved in the development of MMCs for metrology applications such as the determination of hard X‐ray emission intensities. For that purpose, we conceived an MMC with an energy resolution of 57 eV around 30 keV. The absorber is made of gold providing high intrinsic detection efficiency even for a small volume, greater than 90% below 60 keV. We will describe the physical principle and the practical realisation of this detector and discuss its performances by analysing the energy spectrum obtained from a 133Ba source. Preliminary outcomes of relative emission intensities of the K X‐ray of cesium are presented and compared with other experimental data and theoretical calculations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The performance of a four‐element Si drift detector for energy‐dispersive fluorescence‐yield X‐ray absorption fine‐structure measurements is reported, operating at the National Institute of Standards and Technology beamline X23A2 at the National Synchrotron Light Source. The detector can acquire X‐ray absorption fine‐structure spectra with a throughput exceeding 4 × 105 counts per second per detector element (>1.6 × 106 total counts per second summed over all four channels). At this count rate the resolution at 6 keV is approximately 220 eV, which adequately resolves the Mn Kα and Kβ fluorescence lines. Accurate dead‐time correction is demonstrated, and it has been incorporated into the ATHENA data analysis program. To maintain counting efficiency and high signal to background, it is suggested that the incoming count rate should not exceed ~70% of the maximum throughput.  相似文献   

7.
A simple X-ray spectrometer and a PC-Based Data Acquisition System(DAS) have been developed newly in Shanghai Institute of Applied Physics(SINAP),Chinese Academy of Sciences (CAS) for the measurement of the X-ray source generated using laser Compton scattering.The system consists of liquid nitrogen cooled high resolution Si(Li) detector,electronics and a DAQ.The Si(Li) detector was designed and made by Center of Advanced Instruments in SINAP,CAS,it allows us to measure X-rays with the energy up to 60 keV and the energy resolution(FWHM) of 184 eV at 5.9 keV.We measured the system uncertainty was 0.2 eV and time drifting of detector was 0.05% both at 5.9 keV.The DAQ was based on Object-Oriented software LabVIEW 7.1,it has data on-line analysis and original data saved functions.  相似文献   

8.
In this study, mass attenuation coefficients of the undoped and 2% boron nitride–doped magnesium diboride superconductor samples were investigated. Mass attenuation coefficients were measured at 8.04–59.5?keV x-ray energies by using a high-purity germanium detector with a resolution of 182?eV at 5.9?keV. It is observed that mass attenuation coefficients in undoped and doped magnesium diboride samples decrease with increasing photon energy, and doping with the boron nitride leads to increase the absorption of the electromagnetic radiation.  相似文献   

9.
In this paper results are presented from fluorescence‐yield X‐ray absorption fine‐structure spectroscopy measurements with a new seven‐cell silicon drift detector (SDD) module. The complete module, including an integrated circuit for the detector readout, was developed and realised at DESY utilizing a monolithic seven‐cell SDD. The new detector module is optimized for applications like XAFS which require an energy resolution of ~250–300 eV (FWHM Mn Kα) at high count rates. Measurements during the commissioning phase proved the excellent performance for this type of application.  相似文献   

10.
The layout and the characteristics of the hard X‐ray beamline BL10 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA are described. This beamline is equipped with a Si(111) channel‐cut monochromator and is dedicated to X‐ray studies in the spectral range from ~4 keV to ~16 keV photon energy. There are two different endstations available. While X‐ray absorption studies in different detection modes (transmission, fluorescence, reflectivity) can be performed on a designated table, a six‐axis kappa diffractometer is installed for X‐ray scattering and reflectivity experiments. Different detector set‐ups are integrated into the beamline control software, i.e. gas‐filled ionization chambers, different photodiodes, as well as a Pilatus 2D‐detector are permanently available. The performance of the beamline is illustrated by high‐quality X‐ray absorption spectra from several reference compounds. First applications include temperature‐dependent EXAFS experiments from liquid‐nitrogen temperature in a bath cryostat up to ~660 K by using a dedicated furnace. Besides transmission measurements, fluorescence detection for dilute sample systems as well as surface‐sensitive reflection‐mode experiments are presented.  相似文献   

11.
Fabrication and testing of a prototype transmission‐mode pixelated diamond X‐ray detector (pitch size 60–100 µm), designed to simultaneously measure the flux, position and morphology of an X‐ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic‐grade chemical vapor deposition single‐crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ~1 kHz, which leads to an image sampling rate of ~30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5–15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10?2 to 90 W mm?2. Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software‐controlled single channel mode providing accurate flux measurement (fluctuation within 1%).  相似文献   

12.
Detectors based on the superconducting-insulating-superconducting (SIS) junction long ago surpassed Schottky-diode semiconductor detectors as the most sensitive heterodyne mixers in the millimeter and submillimeter (far-infrared) wavelength range. Other novel superconducting device configurations have been applied as direct detectors. Though still in the early stages of development, and yet to find widespread application, they have demonstrated advantages over traditional semiconductor detectors in specialized situations. Exciting progress has been made in recent years in developing the superconducting tunnel junctions (STJ) as a photon detector for optical and near-optical wavelengths, where silicon CCD's are currently dominant. I examine some of the areas in which the properties of STJ detectors may best match the instrument capabilities that astronomical observations require, and discuss the implications of the intrinsic spectral resolution of the STJ. This capability will enable a significant increase in observing efficiency, once the technology matures, that should justify increased complexity of cryogenic systems, particularly for instruments to be used on the next generation of large ground-based telescopes.  相似文献   

13.
The optical design of a two‐dimensional imaging soft X‐ray spectrometer is described. A monochromator will produce a dispersed spectrum in a narrow vertical illuminated stripe (~2 µm wide by ~2 mm tall) on a sample. The spectrometer will use inelastically scattered X‐rays to image the extended field on the sample in the incident photon energy direction (vertical), resolving the incident photon energy. At the same time it will image and disperse the scattered photons in the orthogonal (horizontal) direction, resolving the scattered photon energy. The principal challenge is to design a system that images from the flat‐field illumination of the sample to the flat field of the detector and to achieve sufficiently high spectral resolution. This spectrometer provides a completely parallel resonant inelastic X‐ray scattering measurement at high spectral resolution (~30000) over the energy bandwidth (~5 eV) of a soft X‐ray absorption resonance.  相似文献   

14.
An X‐ray Raman spectrometer for studies of local structures in minerals is discussed. Contrary to widely adopted back‐scattering spectrometers using ≤10 keV X‐rays, a spectrometer utilizing ~20 keV X‐rays and a bent Laue analyzer is proposed. The 20 keV photons penetrate mineral samples much more deeply than 10 keV photons, so that high intensity is obtained owing to an enhancement of the scattering volume. Furthermore, a bent Laue analyzer provides a wide band‐pass and a high reflectivity, leading to a much enhanced integrated intensity. A prototype spectrometer has been constructed and performance tests carried out. The oxygen K‐edge in SiO2 glass and crystal (α‐quartz) has been measured with energy resolutions of 4 eV (EXAFS mode) and 1.3 eV (XANES mode). Unlike methods previously adopted, it is proposed to determine the pre‐edge curve based on a theoretical Compton profile and a Monte Carlo multiple‐scattering simulation before extracting EXAFS features. It is shown that the obtained EXAFS features are reproduced fairly well by a cluster model with a minimal set of fitting parameters. The spectrometer and the data processing proposed here are readily applicable to high‐pressure studies.  相似文献   

15.
The results of computer simulation of the processes of heat propagation inside the multilayer sensor of thermoelectric detector after absorbing the single photons with the energies 1 keV and 100 eV are presented. The variants are considered for different geometries of the sensor which consists of the tungsten absorber and of the thermoelectric layer of the cerium hexaboride. The differences of temporal dependence of the signal arising in the thermoelectric layer when the photon is absorbed in the various areas of absorber are studied in details. The energy resolution and the count rate of the sensor are estimated. It is shown that the multilayer sensors have a number of advantages as compared to the single-layered, and their use is promising in the various fields of science and technology.  相似文献   

16.
Suspended particulate matter (SPM) collected in the urban area of Tokyo was analyzed using a transition edge sensor (TES) microcalorimeter x‐ray detector mounted on a FE‐SEM system. This prototype microcalorimeter spectrometer with an energy resolution of 19 eV identified some severe peak overlaps in the spectra measured by the traditional Si(Li) solid state detector, including S Kα with Pb Mα, Zn Lα with Na Kα, and Ti Kα with Ba Lα. In addition, the TES microcalorimeter showed good spatial resolution for the microanalysis of SPM. The focused ion beam(FIB) was successfully applied to fabricate a cross section of a single SPM particle. The chemical compositonal difference between surface and inner parts, and among different surface parts of the SPM was also determined. Through combination of the FIB technique and the TES microcalorimeter, we achieved a better understanding of the SPM. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
《X射线光谱测定》2006,35(1):47-51
The design and features of a sealed‐off proportional scintillation gas‐filled detector (GSPC) are described. The use of a 50 µm Be window and an Xe‐based gas mixture provides high efficiency of registration in the range 1.5–25 keV. The energy resolution changes from 18% for Al Kα (1.49 keV) to 4.2% for Ag Kα (22.2 keV). When the count rate on the unit output is 5 × 104 s?1, the energy resolution at the Mn Kα line does not exceed 9% at an entrance window area near 3 cm 2 . The detector is operated at room temperature and does not require maintenance during operation. The service life of the detector is over 5 years and the radiation lifetime is practically unlimited. The detector is designed for use in EDXRF spectrometers instead of gas‐filled proportional counters. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The first application of a pnCCD detector for X‐ray scattering experiments using white synchrotron radiation at BESSY II is presented. A Cd arachidate multilayer was investigated in reflection geometry within the energy range 7 keV < E < 35 keV. At fixed angle of incidence the two‐dimensional diffraction pattern containing several multilayer Bragg peaks and respective diffuse‐resonant Bragg sheets were observed. Since every pixel of the detector is able to determine the energy of every incoming photon with a resolution ΔE/E? 10?2, a three‐dimensional dataset is finally obtained. In order to achieve this energy resolution the detector was operated in the so‐called single‐photon‐counting mode. A full dataset was evaluated taking into account all photons recorded within 105 detector frames at a readout rate of 200 Hz. By representing the data in reciprocal‐space coordinates, it becomes obvious that this experiment with the pnCCD detector provides the same information as that obtained by combining a large number of monochromatic scattering experiments using conventional area detectors.  相似文献   

19.
The particle‐induced X‐ray emission (PIXE)‐alpha portable spectrometer of the Laboratori Nazionali del Sud has been upgraded to improve X‐ray energy resolution and efficiency. A value of 124 eV at Mn Κα‐line and a factor of 3 were, respectively, achieved. These enhanced capabilities allowed the thin surface examination of 5 Roman nummi, in which previous near‐surface X‐ray fluorescence measurements revealed traces of mercury. In particular, the new version of the PIXE‐alpha spectrometer has allowed the distinction of the 2.19 keV Hg M‐line from the 2.30 keV S K‐line and the 2.34 keV Pb M‐line. Subsequent elemental association has demonstrated a correlation between surface mercury and silver. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Core–shell X‐ray emission spectroscopy (XES) is a valuable complement to X‐ray absorption spectroscopy (XAS) techniques. However, XES in the hard X‐ray regime is much less frequently employed than XAS, often as a consequence of the relative scarcity of XES instrumentation having energy resolutions comparable with the relevant core‐hole lifetimes. To address this, a family of inexpensive and easily operated short‐working‐distance X‐ray emission spectrometers has been developed. The use of computer‐aided design and rapid prototype machining of plastics allows customization for various emission lines having energies from ~3 keV to ~10 keV. The specific instrument described here, based on a coarsely diced approximant of the Johansson optic, is intended to study volume collapse in Pr metal and compounds by observing the pressure dependence of the Pr Lα emission spectrum. The collection solid angle is ~50 msr, roughly equivalent to that of six traditional spherically bent crystal analyzers. The miniature X‐ray emission spectrometer (miniXES) methodology will help encourage the adoption and broad application of high‐resolution XES capabilities at hard X‐ray synchrotron facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号