首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diblock copolymers consisting of methoxy poly(ethylene glycol) (MPEG) and poly(?‐caprolactone) (PCL), poly(δ‐valerolactone) (PVL), poly(L ‐lactic acid) (PLLA), or poly(lactic‐co‐glycolic acid) (PLGA) as biodegradable polyesters were prepared to examine the phase transition of diblock copolymer solutions. MPEG–PCL and MPEG–PVL diblock copolymers and MPEG–PLLA and MPEG–PLGA diblock copolymers were synthesized by the ring‐opening polymerization of ?‐caprolactone or δ‐valerolactone in the presence of HCl · Et2O as a monomer activator at room temperature and by the ring‐opening polymerization of L ‐lactide or a mixture of L ‐lactide and glycolide in the presence of stannous octoate at 130 °C, respectively. The synthesized diblock copolymers were characterized with 1H NMR, IR, and gel permeation chromatography. The phase transitions for diblock copolymer aqueous solutions of various concentrations were explored according to the temperature variation. The diblock copolymer solutions exhibited the phase transition from gel to sol with increasing temperature. As the polyester block length of the diblock copolymers increased, the gel‐to‐sol transition moved to a lower concentration region. The gel‐to‐sol transition showed a dependence on the length of the polyester block segment. According to X‐ray diffraction and differential scanning calorimetry thermal studies, the gel‐to‐sol transition of the diblock copolymer solutions depended on their degrees of crystallinity because water could easily diffuse into amorphous polymers in comparison with polymers with a crystalline structure. The crystallinity markedly depended on both the distinct character and composition of the block segment. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5784–5793, 2004  相似文献   

2.
AB block copolymers composed of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(amino acid) with a carboxyl group at the end of PEG were synthesized with α‐carboxylic sodium‐ω‐amino‐PEG as a macroinitiator for the ring‐opening polymerization of N‐carboxy anhydride. Characterizations by 1H NMR, IR, and gel permeation chromatography were carried out to confirm that the diblock copolymers were formed. In aqueous media this copolymer formed self‐associated polymer micelles that have a carboxyl group on the surface. The carboxyl groups located at the outer shell of the polymeric micelle were expected to combine with ligands to target specific cell populations. The diameter of the polymer micelles was in the range of 30–80 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3527–3536, 2004  相似文献   

3.
A dilactone, 13,26‐dihexyl‐1,14‐dioxacyclohexacosane‐2,15‐dione (12‐HSAD), was synthesized by lipase‐catalyzed reaction of 12‐hydroxystearic acid (12‐HSA) in high yield. It was subjected to the ring‐opening polymerization with various catalysts to obtain poly(12‐hydroxystearate) (PHS). The polymerization system of 12‐HSAD showed an interesting polymerization behavior because of its large ring system. The polymers produced by this polymerization were directly reacted with L ‐lactide to obtain a diblock copolymer of poly(L ‐lactide)‐block‐poly‐(12‐hydroxystearate) (PLLA‐b‐PHS). Characterization of the resultant copolymers was also performed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
We prepared well‐defined diblock copolymers of thermoresponsive poly(N‐isopropylacrylamide‐coN,N‐dimethylacrylamide) blocks and biodegradable poly(D ,L ‐lactide) blocks by combination of reversible addition‐fragmentation chain transfer radical (RAFT) polymerization and ring‐opening polymerization. α‐Hydroxyl, ω‐dithiobenzoate thermoresponsive polymers were synthesized by RAFT polymerization using hydroxyl RAFT agents. Biodegradable blocks were prepared by ring‐opening polymerization of D ,L ‐lactide initiated by α‐hydroxyl groups of thermoresponsive polymers, which inhibit the thermal decomposition of ω‐dithioester groups. Terminal dithiobenzoate (DTBz) groups of thermoresponsive blocks were easily reduced to thiol groups and reacted with maleimide (Mal). In aqueous media, diblock copolymer products formed surface‐functionalized thermoresponsive micelles. These polymeric micelles had a low critical micelle concentration of 22 μg/L. In thermoresponsive studies of the micelles, hydrophobic DTBz‐surface micelles demonstrated a significant shift in lower critical solution temperature (LCST) to a lower temperature of 30.7 °C than that for Mal‐surface micelles (40.0 °C). In addition, micellar LCST was controlled by changing bulk mixture ratios of respective heterogeneous end‐functional diblock copolymers. Micellar disruption at acidic condition (pH 5.0) was completed within 5 days due to hydrolytic degradation of PLA cores, regardless of showing a slow disruption rate at physiological condition. Furthermore, we successfully improved water‐solubility of hydrophobic drug, paclitaxel by incorporating into the micellar cores. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7127–7137, 2008  相似文献   

5.
Poly(3‐hexylthiophene)‐b‐poly(3‐pentenylthiophene) and poly(3‐hexylthiophene)‐b‐poly(3‐undecenylthiophene) diblock copolymers have been synthesized by McCullough method. X‐ray diffraction analysis of the diblock copolymers displayed all the reflection peaks specific to regioregular poly(3‐hexylthiophene), indicating that the presence of poly(3‐alkenylthiophene) block does not affect the packing of the polymer in the solid state. The synthesized diblock copolymers were subjected to hydroboration/oxidation and hydrosilation to demonstrate the reactivity of the alkenyl substituents. Furthermore, poly(3‐hexylthiophene)‐b‐poly(3‐pentenylthiophene) was used as a chain transfer agent for the ruthenium‐catalyzed ring‐opening metathesis polymerization of cyclooctene to generate a polycyclooctene graft copolymer, which was hydrogenated to give poly(3‐hexylthiophene)‐b‐poly(3‐pentenylthiophene‐g‐polyethylene). The opto‐electronic properties and the morphology of the synthesized polymers have been investigated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Dendritic multifunctional macroinitiators having 12 TEMPO‐based alkoxyamines were prepared by the reaction of a benzyl alcohol having 4 TEMPO‐based alkoxyamines with 1,3,5‐tris[(4‐chlorocarbonyl)phenyl]benzene and 1,3,5‐tris(4‐isocyanatophenyl)benzene. Using the dodecafunctional macroinitiators, TEMPO‐mediated radical polymerizations of styrene (St) were carried out at 120 °C, and 12‐arm star polymers ( star‐12 ) with narrow polydispersities of Mw/Mn = 1.06–1.26 were obtained. To evaluate the livingness for the TEMPO‐mediated radical polymerizations of St, hydrolysis of the ester bonds of the 12‐arm star polymers and subsequent SEC measurements were carried out. Furthermore, using star‐12 as the macroinitiator, TEMPO‐mediated radical polymerization of 4‐vinylpyridine (4‐VP) was carried out, and well‐defined poly(St)‐b‐poly(4‐VP) 12‐arm star diblock copolymers with Mw/Mn = 1.18–1.19 were obtained. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3689–3700, 2005  相似文献   

7.
We successfully synthesized poly(l ‐lactide)‐b‐poly (methyl methacrylate) diblock copolymers at ambient temperature by combining ultraviolet light‐induced copper‐catalyzed ATRP and organo‐catalyzed ring‐opening polymerization (ROP) in one‐pot. The polymerization processes were carried out by three routes: one‐pot simultaneous ATRP and ROP, one‐pot sequential ATRP followed by ROP, and one‐pot sequential ROP followed by ATRP. The structure of the block copolymers is confirmed by nuclear magnetic resonance and gel permeation chromatography, which suggests that the polymerization method is facile and attractive for preparing block copolymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 699–704  相似文献   

8.
Thermoresponsive polymers that undergo a solubility phase transition in water are important as basis for the development for a wide variety of responsive and smart materials. In this study, the synthesis of thermoresponsive copolymers is demonstrated by the straightforward one‐pot statistical postpolymerization modification of well‐defined poly(2‐isopropenyl‐2‐oxazoline) (PiPOx) by ring‐opening reaction with multiple carboxylic acids. The reactions are carried out using dual, triple, and quadruple mixtures of up to four different aliphatic carboxylic acids. The cloud point temperatures of the resulting polymethacrylamide copolymers with ester pendent groups can be finely tuned by adjusting the feed ratio and the hydrophilic–hydrophobic balance of the acids that are used for the ring‐opening modification of PiPOx. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 360–366  相似文献   

9.
A series of narrow molecular weight distribution (MWD) polystyrene‐b‐poly[methyl(3,3,3‐trifluoropropyl)siloxane] (PS‐b‐PMTFPS) diblock copolymers were synthesized by the sequential anionic polymerization of styrene and trans‐1,3,5‐trimethyl‐1,3,5‐tris(3′,3′,3′‐trifluoropropyl)cyclotrisiloxane in tetrahydrofuran (THF) with n‐butyllithium as the initiator. The diblock copolymers had narrow MWDs ranging from 1.06 to 1.20 and number‐average molecular weights ranging from 8.2 × 103 to 37.1 × 103. To investigate the properties of the copolymers, diblock copolymers with different weight fractions of poly[methyl(3,3,3‐trifluoropropyl)siloxane] (15.4–78.8 wt %) were prepared. The compositions of the diblock copolymers were calculated from the characteristic proton integrals of 1H NMR spectra. For the anionic ring‐opening polymerization (ROP) of 1,3,5‐trimethyl‐1,3,5‐tris(3′,3′,3′‐trifluoropropyl)cyclotrisiloxane (F3) initiated by polystyryllithium, high monomer concentrations could give high polymer yields and good control of MWDs when THF was used as the polymerization solvent. It was speculated that good control of the block copolymerization under the condition of high monomer concentrations was due to the slowdown of the anionic ROP rate of F3 and the steric hindrance of the polystyrene precursors. There was enough time to terminate the ROP of F3 when the polymer yield was high, and good control of block copolymerization could be achieved thereafter. The thermal properties (differential scanning calorimetry and thermogravimetric analysis) were also investigated for the PS‐b‐PMTFPS diblock copolymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4431–4438, 2005  相似文献   

10.
A series of poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) copolymers were prepared with varying feed rations by using two step polymerization reactions. Poly(trimethylenecarbonate)(ε‐caprolactone) random copolymer was synthesized with stannous‐2‐ethylhexanoate and followed by adding p‐dioxanone monomer as the other block. The ring opening polymerization was carried out at high temperature and long reaction time to get high molecular weight polymers. The monofilament fibers were obtained using conventional melting spun methods. The copolymers were identified by 1H and 13C NMR spectroscopy and gel permeation chromatography (GPC). The physicochemical properties, such as viscosity, molecular weight, melting point, glass transition temperature, and crystallinity, were studied. The hydrolytic degradation of copolymers was studied in a phosphate buffer solution, pH = 7.2, 37 °C, and a biological absorbable test was performed in rats. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2790–2799, 2005  相似文献   

11.
Poly(lactide) (PLA), poly(ε‐caprolactone) (PCL) and poly(trimethylene carbonate) (PTMC) homopolymers of high molecular weight were prepared using potassium‐based catalyst. Polymerizations were carried out in toluene at room temperature. The chemical structure of the polymers was investigated by 1H and 13C NMR. The physical properties investigated by GPC and DSC for the polymers obtained are similar to those prepared using tin octanoate based catalyst. Using a sequential polymerization procedure, PLA‐b‐PCL, PLA‐b‐PTMC, and PCL‐b‐PTMC diblock copolymers were synthesized and characterized in terms of their composition and physical properties. The formation of diblock copolymers was confirmed by NMR and DSC measurements. In vitro cytotoxicity tests have been carried out using MTS assay and the results show the biocompatibility of these polymers in the presence of the fibroblast cells. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5348–5362, 2008  相似文献   

12.
Biodegradable, amphiphilic, diblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol) (PCL‐b‐PEG), triblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol)‐block‐poly(ε‐caprolactone) (PCL‐b‐PEG‐b‐PCL), and star shaped copolymers were synthesized by ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) or star poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. For the same PCL chain length, the materials obtained in the case of linear copolymers are viscous whereas in the case of star copolymer solid materials are obtained with low Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3975–3985, 2007  相似文献   

13.
Well‐defined azobenzene‐containing side‐chain liquid crystalline diblock copolymers composed of poly[6‐(4‐methoxy‐azobenzene‐4′‐oxy) hexyl methacrylate] (PMMAZO) and poly(γ‐benzyl‐L ‐glutamate) (PBLG) were synthesized by click reaction from alkyne‐ and azide‐functionalized homopolymers. The alkyne‐terminated PMMAZO homopolymers were synthesized by copper‐mediated atom transfer radical polymerization with a bromine‐containing alkyne bifunctional initiator, and the azido‐terminated PBLG homopolymers were synthesized by ring‐opening polymerization of γ‐benzyl‐L ‐glutamate‐N‐carboxyanhydride in DMF at room temperature using an amine‐containing azide initiator. The thermotropic phase behavior of PMMAZO‐b‐PBLG diblock copolymers in bulk were investigated using differential scanning calorimetry and polarized light microscopy. The PMMAZO‐b‐PBLG diblock copolymers exhibited a smectic phase and a nematic phase when the weight fraction of PMMAZO block was more than 50%. Photoisomerization behavior of PMMAZO‐b‐PBLG diblock copolymers and the corresponding PMMAZO homopolymers in solid film and in solution were investigated using UV–vis. In solution, trans–cis isomerization of diblock copolymers was slower than that of the corresponding PMMAZO homopolymers. These results may provide guidelines for the design of effective photoresponsive anisotropic materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
Polysiloxane diblock copolymers containing a pure polysiloxane backbone were prepared by the functionalization of poly(dimethylsiloxane)‐b‐poly(methylvinylsiloxane) copolymers. The copolymers were obtained by the sequential anionic copolymerization of either 1,3,5,7‐tetramethyl‐1,3,5,7‐tetravinylcyclotetrasiloxane or 1,3,5‐trimethyl‐1,3,5‐trivinylcyclotrisiloxane with hexamethylcyclotrisiloxane. The two vinyl monomers showed large differences in the propagation rates, but both could be used for the formation of polysiloxane block copolymers. Differences in the polymerization sequences were investigated and revealed that better control was obtained if the slower propagating monomer was polymerized first. The method permitted the synthesis of block copolymers with molecular weight distributions around 1.4 and lower and high block purities. The vinyl groups of the block copolymers were quantitatively and selectively functionalized by hydrosilation or epoxidation reactions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1539–1551, 2002  相似文献   

15.
Amphiphilic, biodegradable block glycopolymers based on poly(ε‐caprolactone) (PCL) with various pendent saccharides were synthesized by combination of ring‐opening polymerization (ROP) and “click” chemistry. PCL macroinitiators obtained by ROP of ε‐caprolactone were used to initiate the ROP of 2‐bromo‐ε‐caprolactone (BrCL) to get diblock copolymers, PCL‐b‐PBrCL. Reaction of the block copolymers with sodium azide converted the bromine groups in the PBrCL block to azide groups. In the final step, click chemistry of alkynyl saccharides with the pendent azide groups of PCL‐b‐PBrCL led to the formation of the amphiphilic block glycopolymers. These copolymers were characterized by 1H NMR spectroscopy and gel permeation chromatography. The self‐assembly behavior of the amphiphilic block copolymers was investigated using transmission electron microscopy and atomic force microscope, spherical aggregates with saccharide groups on the surface were observed, and the aggregates could bind reversibly with Concanavalin A. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3583–3594, 2009  相似文献   

16.
Well‐defined diblock and triblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) were successfully synthesized through the reversible addition–fragmentation chain transfer polymerization of N‐isopropylacrylamide (NIPAM) with PEO capped with one or two dithiobenzoyl groups as a macrotransfer agent. 1H NMR, Fourier transform infrared, and gel permeation chromatography instruments were used to characterize the block copolymers obtained. The results showed that the diblock and triblock copolymers had well‐defined structures and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.2), and the molecular weight of the PNIPAM block in the diblock and triblock copolymers could be controlled by the initial molar ratio of NIPAM to dithiobenzoate‐terminated PEO and the NIPAM conversion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4873–4881, 2004  相似文献   

17.
The anionic ring‐opening polymerization of oxetanes containing hydroxyl groups was carried out with potassium tert‐butoxide as an initiator in the presence of 18‐crown‐6‐ether in N‐methylpyrrolidinone at 180 °C; it yielded corresponding multifunctional hyperbranched polymers: poly(3‐ethyl‐3‐hydroxymethyloxetane)s, with number‐average molecular weights of 2200–4100 in 83–95% yields, and poly(3‐methyl‐3‐hydroxymethyloxetane)s, with number‐average molecular weights of 4600–5200 in 70–95% yields. The synthesized poly(3‐ethyl‐3‐hydroxymethyloxetane)s and poly(3‐methyl‐3‐hydroxymethyloxetane)s were hyperbranched polyethers containing an oxetane moiety and many hydroxy groups at the ends. The postpolymerization of poly(3‐ethyl‐3‐hydroxymethyloxetane)s was performed in the presence of potassium tert‐butoxide and 18‐crown‐6‐ether in N‐methylpyrrolidinone at 180 °C; it yielded corresponding polymers with higher molecular weights in good yields. The cationic polymerization of poly(3‐ethyl‐3‐hydroxymethyloxetane) derivatives was carried out with boron trifluoride etherate as an initiator and was followed by alkaline hydrolysis; this yielded a new branched polymer, a poly(hyperbranched polyether), with many pendant hydroxy groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3739–3750, 2004  相似文献   

18.
Poly(dimethylsiloxane)‐containing diblock and triblock copolymers were prepared by the combination of anionic ring‐opening polymerization (AROP) of hexamethylcyclotrisiloxane (D3) and nitroxide‐mediated radical polymerization (NMRP) of methyl acrylate (MA), isoprene (IP), and styrene (St). The first step was the preparation of a TIPNO‐based alkoxyamine carrying a 4‐bromophenyl group. The alkoxyamine was then treated with Li powder in ether, and AROP of D3 was carried out using the resulting lithiophenyl alkoxyamine at room temperature, giving functional poly(D3) with Mw/Mn of 1.09–1.16. NMRPs of MA, St, and IP from the poly(D3) at 120 °C gave poly(D3b‐MA), poly(D3b‐St), and poly(D3b‐IP) diblock copolymers, and subsequent NMRPs of St from poly(D3b‐MA) and poly(D3b‐IP) at 120 °C gave poly(D3b‐MA‐b‐St) and poly(D3b‐IP‐b‐St) triblock copolymers. The poly(dimethylsiloxane)‐containing diblock and triblock copolymers were analyzed by 1H NMR and size exclusion chromatography. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6153–6165, 2005  相似文献   

19.
This article discusses an effective route to prepare amphiphilic diblock copolymers containing a poly(ethylene oxide) block and a polyolefin block that includes semicrystalline thermoplastics, such as polyethylene and syndiotactic polystyrene (s‐PS), and elastomers, such as poly(ethylene‐co‐1‐octene) and poly(ethylene‐co‐styrene) random copolymers. The broad choice of polyolefin blocks provides the amphiphilic copolymers with a wide range of thermal properties from high melting temperature ~270 °C to low glass‐transition temperature ~?60 °C. The chemistry involves two reaction steps, including the preparation of a borane group‐terminated polyolefin by the combination of a metallocene catalyst and a borane chain‐transfer agent as well as the interconversion of a borane terminal group to an anionic (? O?K+) terminal group for the subsequent ring‐opening polymerization of ethylene oxide. The overall reaction process resembles a transformation from the metallocene polymerization of α‐olefins to the ring‐opening polymerization of ethylene oxide. The well‐defined reaction mechanisms in both steps provide the diblock copolymer with controlled molecular structure in terms of composition, molecular weight, moderate molecular weight distribution (Mw/Mn < 2.5), and absence of homopolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3416–3425, 2002  相似文献   

20.
Controlled polystyrenes with different molar mass values were synthesized starting from benzoyl peroxide and TEMPO (2,2,6,6‐tetramethylpiperidinyl‐1‐oxy). The polystyrene homopolymers served as initiators for the block copolymerization of phthalimide methylstyrene (PIMS) to synthesize polystyrene‐b‐poly(PIMS) diblock copolymers. Diblock copolymers with well defined structures as well as controlled and narrow molar mass distribution were obtained from the lower‐mass polystyrene homopolymers. The lower‐mass copolymers were found to be active as initiators in the synthesis of the polystyrene‐b‐poly(PIMS)‐b‐polystyrene triblock copolymers. In each reaction step, the effects of conversion and reaction time on the molar mass characteristics of the prepared block copolymers were investigated. The diblock and triblock copolymers were modified using hydrazine as the reagent in order to obtain the corresponding functional amino block copolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1237–1244, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号