首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epoxy/SiO2 nanocomposite materials were prepared by cationic photopolymerization and sol–gel process using a novel epoxy oligomer (EP‐Si(OC2H5)3) prepared by 3‐isocyanatopropyltriethoxysilane (IPTS)‐grafted bisphenol A epoxy resin and tetraethyl orthosilicate as inorganic precursor. The chemical structures of EP‐Si(OC2H5)3 were characterized by Fourier transformed infrared spectroscopy. Transmission electron microscopy showed that the in situ generated nano‐SiO2 dispersed uniformly in the EP matrix, and its average diameter is around 40 nm. The relationship between nanocomposite materials' thermal/mechanical properties and nano‐SiO2 introduced were studied by thermogravimetric analysis, dynamic mechanical analysis, and impact strength test. The results showed that the nanocomposite materials' thermal and mechanical properties improved a lot with increase of the SiO2 content. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A novel technique in controlling the size of SiO2 nano‐particles in the preparation of Nafion/SiO2 composite membranes via in situ sol–gel method, as well as the effects of nano‐particle size on membrane properties and cell performance, is reported in this paper. Nafion/SiO2 composite membranes containing SiO2 nano‐particles with four different diameters (5 ± 0.5, 7 ± 0.5, 10 ± 1, and 15 ± 2 nm) are fabricated by altering the reactant concentrations during in situ sol–gel reaction. Sequentially, size effects of SiO2 nano‐particles on membrane properties and cell performance are investigated by SEM/EDAX, TEM, TGA, mechanical tensile, and single cell tests, etc. The results suggest that 10 nm is a critical diameter for SiO2 incorporated into Nafion matrix, exhibiting desirable physico‐chemical properties for operation at elevated temperature and low humidity. At 110°C and 59% RH, the output voltage of the cell equipped with Nafion/SiO2 (10 nm) obtains an output voltage of 0.625 V at 600 mA/cm2, which is 50 mV higher than that of unmodified Nafion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Organic–inorganic hybrid core‐shell nanoparticles with diameters ranging from 100 to 1000 nm were prepared by a one‐pot synthesis based on base catalyzed sol–gel reactions using tetraethoxysilane and a triethoxysilane‐terminated polyethylene‐b‐poly(ethylene glycol) as reactants. Data from TEM, TGA, and solid‐state NMR analysis are in agreement with the formation of core‐shell nanoparticles with an inorganic‐rich core and an external shell consisting of an amphiphilic block copolymer monolayer. The influence of the organic–inorganic ratio, solution concentration, and postcuring temperature on core and shell dimensions of the nanospheres were investigated by TEM microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1699–1709, 2008  相似文献   

4.
In this article, the first generation of healable sol–gel based polymers is reported. A dual organic–inorganic crosslinked network is developed containing non‐reversible crosslinks and reversible (tetrasulfide) groups. The designed polymer architecture allows thermally induced mesoscale flow leading to damage closure followed by interfacial strength restoration due to reformation of the reversible groups. While the reversible bonds are responsible for the flow and the interface restoration, the irreversible crosslinks control the required mechanical integrity during the healing process. The temperature dependent gap closure kinetics is strongly affected by the crosslinking density and tetrasulfide content. Raman spectroscopy is used to explain the gap closure kinetics in air and dry nitrogen. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1953–1961  相似文献   

5.
In this work, we compared formation and properties of heat‐treated Ag nanoparticles in silica matrix synthesized by RF‐reactive magnetron cosputtering and sol–gel methods separately. The sol–gel and sputtered films were annealed at different temperatures in air and in a reduced environment, respectively. The optical UV‐visible spectrophotometry have shown that the absorption peak appears at 456 and 400 nm wavelength indicating formation of silver nanoparticles in SiO2 matrix for both the sol–gel and sputtering methods at 100 and 800 °C, respectively. XPS measurements showed that the metallic Ag0 nanoparticles can be obtained from both the techniques at these temperatures. According to XPS and AFM analysis, by increasing annealing temperature, the concentration of the Ag nanoparticles on the surface decreased and the nanoparticles diffused into the substrate for the sol–gel films, while for the films deposited by cosputtering method, the Ag surface concentration increased by increasing the temperature. Based on AFM observations, the size of nanoparticles on the surface were obtained at about 25 and 55 nm for sputtered and sol–gel films, respectively, supporting our optical data analysis. In comparison, the sputtering technique can produce Ag metallic nanoparticles with a narrower particle size distribution relative to the sol–gel method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Organic–inorganic hybrids based on poly(butyleneadipate‐co‐terephthalate)/titanium dioxide (PBAT/TiO2) hybrid membranes were prepared via a sol–gel process. The PBAT/TiO2 hybrid membranes were prepared for various PBAT/TiO2 ratios. The resulting hybrids were characterized with a morphological structure, hydrophilicity, biodegradability, and thermal properties. The results showed that macrovoids underwent a transition into a sponge‐like membrane structure with the addition of TiO2. After sol–gel transition, a strong interaction between the inorganic network and polymeric chains led to an increase in glass transition temperature (Tg), thermal degrading temperature, and hydrophilicity, and hence a higher biodegradability. According to X‐ray diffraction measurements of the crystal structure of the hybrid, the presence of TiO2 did not change the crystal structure of PBAT. TiO2 networks are uniformly dispersed into the PBAT matrix and no aggregation of TiO2 networks in the hybrid membranes was observed through the small angle X‐ray scattering measurements. Thus, the sol–gel process of PBAT and TiO2 can be used to prepare a hybrid with higher application temperature and faster biodegradation rate. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
This article describes the preparation of novolac‐type phenolic resin/silica hybrid organic–inorganic nanocomposite, with a sol–gel process. The coupling agent was used to improve the interface between the organic and inorganic phases. The effect of the structure of the nanocomposite on its physical and chemical properties is discussed. The coupling agent reacts with the resin to form covalent bonds. The structure of the modified hybrid nanocomposites was identified with a Fourier transform infrared spectroscope. The silica network was characterized by nuclear magnetic resonance imaging (29Si NMR). Results revealed that Q4 (tetrasubstituted) and T3 (trisubstituted) are the dominant microstructures. The size of the silica in the phenolic resin was characterized with a scanning electron microscope. The size of the particles of inorganic silica in the modified system was less than 100 nm. The nanocomposite exhibited good transparency. Moreover, the thermal and mechanical properties exhibited significant improvement. The modified hybrid composite exhibited favorable thermal properties. The temperature at which a weight loss of 5% occurred increased from 281 to 350 °C. The flexural strength increased by 6–30%. The limiting oxygen index of the nanocomposite reached 37, and the Underwriters Laboratory test was 94V‐0. Consequently, these materials possess excellent flame‐retardant properties. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 905–913, 2003  相似文献   

9.
Poly(styrene-co-maleic anhydride)/silica hybrid material has been successfully prepared from styrene–maleic anhydride copolymer and tetraethoxysilane (TEOS) in the presence of a coupling agent (3-aminopropyl)triethoxysilane (APTES) by an in situ sol–gel process. It was observed that the gel time of sol–gel solution was dramatically influenced by the amount of APTES. The hybrid material exhibits optical transparency almost as good as both silica gel and the copolymer. The covalent bonds between organic and inorganic phases were introduced by the aminolysis reaction of the amino group with maleic anhydride units of copolymer to form a copolymer bearing trimethoxysilyl groups, which undergo hydrolytic polycondensation with TEOS. The differential scanning calorimetry (DSC) showed that the glass transition temperature of the hybrid materials increases with increasing of SiO2 composition. Photographs of scanning electron microscopy (SEM) and atomic force microscopy (AFM) inferred that the size of the inorganic particles in the hybrid materials was less than 20 nm. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1607–1613, 1998  相似文献   

10.
A series of thermally stable organic/inorganic second‐order nonlinear optical (NLO) composites via sequential self‐repetitive reaction (SSRR) and sol–gel process has been developed. This SSRR is based on carbodiimide (CDI) chemistry. The difunctional azo chromophores (2,4‐diamino‐4′‐(4‐ nitrophenyl‐diazenyl)azobenzene (DNDA)) was reacted with excessive amount of 4, 4′‐methylene‐ diphenylisocyanate (MDI) to form poly‐CDI, and subsequently trimellitic anhydride (TMA) was added to obtain poly(N‐acylurea). The organic/inorganic composites containing prepolymer of phenyltriethoxysilane (PTEOS) and poly(N‐acylurea) in different weight ratios (10:90, 30:70, 50:50, 70:30, 90:10 wt%) were prepared, respectively. The moderate glass transition temperature (Tg) characteristic of the poly(N‐acylurea) allows the NLO‐active polymer to achieve high poling efficiency. After in situ poling and curing process, the Tgs of the composites were elevated, and higher than that of the pristine poly(amide–imide) sample. Electro‐optical (EO) coefficients (r33) of about 5.5 ~ 18.0 pm/V at 830 nm were obtained. Excellent temporal stability at 100°C, and waveguide characteristics (3.1–4.2 dB/cm at 830 nm) were also obtained for these composites. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The effects of UV irradiation on the properties of Sb5+ doped gel films were studied, which were prepared from stannic chloride (SnCl4·5H2O) and sodium alkoxide (NaOR) modified with benzytone (BzAcH). It was found that the absorption peak at around 335 nm due to the π → π* transition showed the formation of a chelate ring to Sn. The intensity of the absorption band decreased with UV light irradiation at 365 nm from a high‐pressure mercury lamp (250W). This finding showed that the SnO2:Sb gel films modified with BzAcH were photosensitive to UV light. Additionally, this finding was applied to the fabrication of patterns on the SnO2:Sb thin films. A gel film was irradiated through a mask and leached in water. Then a positive pattern was formed on the SnO2:Sb thin films attached to the substrate. After heat treatment, the SnO2:Sb gel films changed into transparent conductive films with an average conductivity of 1.20 × 10?2Ω cm and with a transmission of 97.1%. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Organic–inorganic composite mono-valent cation selective membranes (MCSMs) were prepared by sol–gel under acidic conditions, in which sulfonic acid groups were introduced at the inorganic segment. Studies on physicochemical and electrochemical properties revealed their excellent mechanical, thermal, and oxidative stabilities, high conductivity, ion-exchange capacity, permselectivity for mono-valent cations, ionic diffusion and water transport number. These properties suggested the suitability of MCSMs, especially Si-65%, for electro-separation of Na+ from Ca2+, Mg2+, and Fe3+. The effect of electrolyte solution on the characteristics of the current–voltage (iv) curve in MCSM was studied based on the concentration polarization. Electro-transport of different ions in terms of plateau length and concentration profiles for different ions in the solution phase, diffusion boundary layer and membrane phase were presented. Information obtained from iv curve analysis were validated by electrodialysis (ED) experiments for individual or mixed electrolyte solutions. Electro-transport efficiency and separation factor of different ions for MCSM and Nafion117 (N117) membranes were compared, which suggested suitability of MCSMs for separating cations.  相似文献   

13.
Two hybrid coatings synthesized by using alkoxysilanes as precursors in a sol–gel process, differing from each other in terms of the organic components in alkoxysilanes, have been developed to improve the water repellent properties of base paper. The sol–gel‐coated base paper samples were characterized by scanning electron microscopy, atomic force microscopy, confocal laser scanning microscopy, X‐ray photoelectron spectroscopy, time‐of‐flight secondary ion mass spectrometry, and contact angle measurements. The sol–gel coatings were found to clearly change the surface properties of base paper. Thin coating layers were formed on base paper surfaces. The topographical data indicated the formation of discontinuous thin films; the time‐of‐flight secondary ion mass spectrometry analyses confirmed that the coatings were covering the fibres but only partially covered the fibre–fibre intersections. Water and the subsequent heat treatment used as a reference treatment reduced the surface roughness and porosity and slightly changed the surface chemistry of the base paper. The wettability and absorptivity of base paper was clearly reduced by the applied coatings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Hybrid polyimide/silica materials were prepared from polyimides bearing reactive functions along the polymer backbone, which can react with. The silica phase was formed by sol–gel process using ammonium hydroxide catalyst. Silica fillers prepared under basic conditions were compared with materials prepared using chlorhydric acid. The synthesized hybrid materials were characterized by TGA, IRTF, and NMR. The density of the different systems was also measured. The morphology of these hybrid systems were investigated by both scanning and transmission electron microscope. Thermal properties of the composites were also evaluated by DSC and DMA. The morphology of silica fillers highly depends on the catalyst, on the reaction conditions of the sol–gel process, and the linking formation with the polyimide. It results that optimized conditions lead to homogeneous hybrid films containing 12 wt % of silica particles of about 20 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1891–1902, 2008  相似文献   

15.
The effect of polymer–filler interaction on solvent swelling and dynamic mechanical properties of the sol–gel derived acrylic rubber (ACM)/silica, epoxidized natural rubber (ENR)/silica, and poly (vinyl alcohol) (PVA)/silica hybrid nanocomposites has been described for the first time. Tetraethoxysilane (TEOS) at three different concentrations (10, 30, and 50 wt %) was used as the precursor for in situ silica generation. Equilibrium swelling of the hybrid nanocomposites in respective solvents at ambient condition showed highest volume fraction of the polymer in the swollen gel in PVA/silica system and least in ACM/silica, with ENR/silica recording an intermediate value. The Kraus constant (C) also followed a similar trend. In dynamic mechanical analysis, the storage modulus dropped at higher strain (>1%), which indicated disengagement of polymer segments from the filler surfaces. This drop was maximum in ACM/silica, intermediate in ENR/silica, and minimum in PVA/silica, both at 50 and 70 °C. The drop in modulus with theoretical volume fraction of silica (ϕ) was interpreted with the help of a Power law model ΔE′ = a1ϕ, where a1 was a constant and b1 was primarily a filler attachment parameter. Strain dependence of loss modulus was observed in ACM/silica hybrid nanocomposites, while ENR/silica and PVA/silica nanocomposites showed almost strain‐independent behavior. The storage modulus showed sharp increase with increasing frequency in ACM/silica system, while that was lower in both ENR/silica (at higher frequency) and PVA/silica systems (in the entire frequency spectrum). The increase in modulus with ϕ also followed similar model ΔE′ = a2ϕ proposed in the strain sweep mode. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2399–2412, 2005  相似文献   

16.
Acid form Surlyn®/titanate hybrid materials were achieved by polymer in situ sol–gel reactions for a titanium alkoxide monomer. Atomic force microscopic images revealed arrays of titania nanoparticles having diameters of 10–30 nm. Fourier transform infrared spectra verified the presence of an internally polymerized titanate phase although unhydrolyzed TiOR groups were present. Carboxylic acid dimerization was complete at room temperature, but carboxylate anions appeared at higher titanate levels. The methylene rocking doublet persisted upon incorporation of the inorganic component, which supported the idea of largely undisrupted crystallinity. Thermogravimetric analysis showed that the degradation onset temperature of each hybrid is largely unaffected by the presence of the inorganic filler, which is consistent with the concept of an isolated titanate phase. The first‐scan differential scanning calorimetric thermogram for unfilled Surlyn® revealed the usual twin‐melting endotherms. In contrast, the primary, high‐temperature melting endotherm was seen on the first scan for the Surlyn®/titanate hybrids, but the lower temperature endotherm was either not present or weak. Primary melting persisted after several cycles of heating above the melting temperature followed by cooling, demonstrating that primary crystallinity persisted despite titanate phase incorporation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 11–22, 2003  相似文献   

17.
A single calcium glycolate was synthesized. The alkoxide was stable under ambient atmosphere. The calcium glycolate, phosphoric acid and P(OH) x (OEt)3− x were used as the precursors. Acetic acid was used as a reagent to modify the calcium glycolate and to change the acidity of the mixtures of the precursors. Mixtures of the calcium glycolate and phosphoric acid in a Ca/P ratio of 1.67 showed unusual sol–gel behavior. A transparent gel could be formed depending on the content of acetic acid and the extent of stirring. The behavior is attributed to a high viscosity and a large molecular size of the ethylene glycol solvent, leading to a strong dependence of the reactions in the mixtures on the diffusion process, greatly affected by stirring. When the mixtures of the calcium glycolate and PO(OH) x (OEt) 3− x contained acetic acid at an acetic acid/Ca ratio of 3, stable alkoxide solutions with Ca/P ratios of 1.0, 1.5 and 1.67 could be formed. Different calcium phosphate compounds and hydroxyapatite coatings on alumina substrates could easily be formed from the alkoxide solutions. The chemical homogeneity provided by the alkoxide route leads to easy formation of the required products. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
The peculiar thermal behavior of four PTFE/PMMA (Polymethylmethacrylate) core–shell nanoparticle samples, marked DV2M1, DV2M2, DV2M4, and DV2M6, was studied by combined differential scanning calorimetry and thermogravimetric analysis. The melting process of the PTFE in the various samples, subjected to annealing and thermal treatments, does not change. In contrast, a complex fractionated crystallization‐type behavior for the PTFE component was observed. The nanocomposite produced by the PMMA shell fluidification features a perfect dispersion of the nanometric PTFE cores. In these conditions, only one crystallization exotherm at very high undercooling is observed, possibly deriving from the homogeneous nucleation mechanism. In contrast, when high temperature thermal treatments cause the decomposition with partial loss of the PMMA shell and allows some cores to get in contact and merge, a crystallization process structured into several components is observed. This behavior indicates that different nucleation mechanisms are active, possibly involving the participation of distinct types of active nuclei with distinct crystallization efficiencies. Finally, when the PMMA shell amount is substantially reduced by the thermal degradation, only the expected crystallization process at moderate undercooling (310 °C) is observed, corresponding to the bulk crystallization induced by the most efficient heterogeneous nuclei. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 548–554, 2010  相似文献   

19.
ABA‐based triblock copolymers of styrene as block ends and gelable 3‐acryloxypropyltriethoxysilane (APTES) as the middle block were successfully prepared through nitroxide‐mediated polymerization (NMP). The copolymers were bulk self‐assembled into films and the degree of phase separation between the two blocks was evaluated by differential scanning calorimetry (DSC). Their morphology was examined through small angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM), whereas the mechanical properties of the corresponding cross‐linked self‐assembled nanostructures were characterized by dynamic mechanical analysis (DMA). Acidic treatment of the triblock copolymers favored the hydrolysis and condensation reactions of the APTES‐rich nanophase, and induced a mechanical reinforcement evidenced by the increase of storage modulus values and the shift of the glass transition temperature to higher temperatures due to confinement effects. In addition, the lamellar structure of the hybrid films was retained after the removal of the organic part by calcination. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
A stable nonlinear optical (NLO) film containing “T” type alkoxysilane dye was prepared by sol–gel technology. This crosslinked “T” type alkoxysilane dye was synthesized and fully characterized by FTIR, UV–Vis spectra, and 1H‐NMR. Followed by hydrolysis and copolymerization processes of the alkoxysilane with γ‐glycidoxypropyl trimethoxysilane (KH560) and tetraethoxysilane (TEOS), high quality inorganic–organic hybrid second‐order NLO films were obtained by spin coating. The “T” type structure of the alkoxysilane was found to be effective for improving the temporal stability of the optical nonlinearity due to the reduction in the relaxation of the chromophore in the film materials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号