首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New class of photo and electrically switchable azobenzene containing pendant bent‐core liquid crystalline monomers ( AZBM 1, 2 , and 3 ) and their polymers ( AZBP 1, 2 , and 3 ) are reported. The synthesized precursors, monomers, and polymers were characterized by FT‐IR, 1H, and 13C NMR spectroscopy. Thermal stability of polymers was examined by thermogravimetric analysis and revealed stable up to 260 °C. The mesophase transition of monomers and polymers are observed through polarized optical microscopy (POM) and further confirmed by differential scanning calorimetry (DSC). The electrically switching property of monomers and their polymers were studied by electro‐optical method. Among the three monomers AZBM 1, 2 , and 3 , AZBM 1 and 2 exhibit antiferroelectric (AF) switching and AZBM 3 exhibits ferroelectric (F) switching behavior. On the other hand, low molecular weight polymers ( AZMP 1, 2 , and 3 ) show weak AF and F switching behavior. The photo‐switching properties of bent‐core azo polymers are investigated using UV‐vis spectroscopy, trans to cis isomerization occurs around 25 s for AZBP‐1 and 30 s for AZBP‐2 and 3 in chloroform, whereas reverse processes take place around 80 and 90 s. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
Dihydridocarbonyltris(triphenylphosphine)ruthenium catalyzes the regiospecific anti‐Markovnikov addition of an ortho C? H bond of benzophenone across the C? C double bonds of α,ω‐bis(trimethylsilyloxy)copoly(dimethylsiloxane/vinylmethylsiloxane) (99:1), α,ω‐bis(vinyldimethylsilyloxy)poly(dimethylsiloxane), and 1,3‐divinyltetramethyldisiloxane to yield α,ω‐bis(trimethylsilyloxy)copoly[dimethylsiloxane/2‐(2′‐benzophenonyl)ethylmethylsiloxane]), α,ω‐bis[2‐(2′‐benzophenonyl)ethyldimethylsilyloxy]poly(dimethylsiloxane), and 1,3‐bis[2‐(2′‐benzophenonyl)ethyl]tetramethyldisiloxane, respectively. These materials have been characterized with 1H, 13C, and 29Si NMR and IR spectroscopy. Their molecular weight distributions have been determined by gel permeation chromatography. The thermal stability of the polymers has been measured by thermogravimetric analysis, and their glass‐transition temperatures (Tg's) have been determined by differential scanning calorimetry. The molecular weight distribution, thermal stability, and Tg's of the modified polysiloxanes are similar to those of the precursor polymers. The molecular weights of these materials can be significantly increased via heating to 300 °C for 1 h. This may be due to crosslinking, by pyrocondensation, of pendant anthracene groups, which are produced by the pyrolysis of the attached ortho‐alkyl benzophenones. UV spectroscopy of the pyrolysate of 1,3‐bis[2‐(2′‐benzophenonyl)ethyl]tetramethyldisiloxane has confirmed the presence of pendant anthracene groups. Thermal crosslinking by the pyrocondensation of pendant anthracene groups has been verified by the pyrolysis of α,ω‐bis(trimethylsilyloxy)copoly[dimethylsiloxane/2‐(9′‐anthracenyl)ethylmethylsiloxane] (97:3). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5514–5522, 2004  相似文献   

3.
Three series of semiflexible and rigid main‐chain polyesters containing photoreactive mesogenic units derived from p‐phenylenediacrylic acid (PDA) and cinnamic acid have been synthesized by high‐temperature polycondensation. The thermal and mesomorphic properties of the polymers have been determined. The photochemical behavior of polymer P‐[1]‐T, which contains a PDA unit, has been studied both in solution and in films. In solution, [2+2] photocycloaddition, E/Z photoisomerization, and photo‐Fries rearrangement can take place. In contrast, the dominant process in spin‐coated films is the [2+2] photocycloaddition reaction, which causes crosslinking of the polymer. In films, the photochemistry and induction of anisotropy are strongly influenced by the aggregation of the PDA phenylester unit. A dichroism of about 0.2 has been induced in films by irradiation with linearly polarized UV light, and thus the capability of these films to induce optical anisotropy and align liquid crystals has been demonstrated. Liquid‐crystalline cells have been made with polarized irradiated films of P‐[1]‐T as aligning layers. A commercial liquid‐crystalline mixture has been used for this study, and a similar liquid‐crystalline order determined by polarized Fourier transform infrared to a commercial cell with rubbed polyimide as an aligning layer has been detected. Because of crosslinking of the irradiated P‐[1]‐T photoaligning layer, the photoinduced anisotropy is stable at high temperatures, and the liquid‐crystalline molecules are insoluble in the irradiated polymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4907–4921, 2005  相似文献   

4.
A set of poly[ω‐(4′‐cyano‐4‐biphenyloxy)alkyl‐1‐glycidylether]s were synthesized by the chemical modification of the corresponding poly(ω‐bromoalkyl‐1‐glycidylether)s with the sodium salt of 4‐cyano‐4′‐hydroxybiphenyl. New high‐molecular‐weight side‐chain liquid‐crystalline polymers were obtained with excellent yield and almost quantitative degree of modification. All side‐chain liquid‐crystalline polymers were rubbers soluble in tetrahydrofuran. The characterization by 1H and 13C NMR revealed no changes in the regioregular isotactic microstructure of the starting polymer and the absence of undesirable side reactions such as deshydrobromination. The liquid crystalline behavior was analyzed by DSC and polarized optical microscopy, and mesophase assignments were confirmed by X‐ray diffraction. Polymers that had alkyl spacers with n = 2 and 4 were nematic, those that had spacers with n = 6 and 8 were nematic cybotactic, and those that had longer spacers (n = 10 and 12) were smectic C and showed some crystallization of the side alkyl chains. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3002–3012, 2004  相似文献   

5.
The synthesis of two vinyl‐terminated side‐chain liquid‐crystalline polyethers containing benzylideneaniline moieties as mesogenic cores was approached in two different ways: by chemically modifying poly(epichlorohydrin) with suitable mesogenic acids or by polymerizing analogous glycidyl ester or glycidyl ether derivatives. In all the conditions tested, the first approach led to materials in which the imine group was hydrolyzed. The second approach led to the desired polymers PG2a and PG2b , but only from the glycidyl ether derivatives and when the initiator was the system that combined polyiminophosphazene base t‐Bu‐P4 and 3,5‐di‐t‐butylphenol. These polymers were chemically characterized by IR and 1H and 13C NMR spectroscopies. The estimated degrees of polymerization ranged from 30 to 36. The liquid crystalline behavior of the synthesized polymers was studied by differential scanning calorimetry, polarized optical microscopy (POM) and X‐ray diffraction. Both polymers behave like liquid crystals and exhibited a single mesophase, which was recognized as a smectic C mesophase, probably with a bilayer arrangement, i.e., a smectic C2 mesophase. The crosslinking of both polymers was performed with dicumyl peroxide as initiator, which led to liquid crystalline thermosets. POM and X‐ray diffraction confirmed that the mesophase organization mantained on the crosslinked materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1877–1889, 2006  相似文献   

6.
Conjugated polymers consisting of pyrrole or an N‐substituted pyrrole bridged by methine with a mesogenic group were synthesized. Chemical structures of the products were confirmed with IR, NMR, UV–visible (UV–vis) spectroscopy, and gel permeation chromatography analysis. Liquid crystallinity was examined with differential scanning calorimetry measurements and polarizing optical microscopy observations. Liquid crystal domains of the polymer were macroscopically oriented in one direction by an external magnetic force (10 Tesla). The polymer orientation was confirmed by optical microscopy and X‐ray analysis. One of the polymers exhibited a striated fan‐shaped texture when observed with a polarizing optical microscope. This is attributed to the formation of a chiral smectic C (SmC*) phase, which is a property of ferroelectricity. Spontaneous polarization of the polymer occurred at 110 nC/cm2. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 616–629, 2005  相似文献   

7.
A series of hairy‐rod polymers, poly{2,5‐bis[(4‐alkoxyphenyl)oxycarbonyl]styrenes} (P‐OCm, m = 1, 2, 4, 6, 8, 10, 12, 14, 16, and 18) were designed and successfully synthesized via free radical polymerization. The chemical structure of the monomers was confirmed by elemental analysis, 1H NMR and 13C NMR. The molecular characterizations of the polymers were performed with 1H NMR and gel permeation chromatography. The phase structures and transitions of the polymers were investigated by the combination of techniques including differential scanning calorimetry, wide‐angle X‐ray diffraction, polarized optical microscopy, and rheological measurement. The experimental results revealed that the self‐assembly behaviors of P‐OCm changed with the increase in m. First, the P‐OCm (m = 1, 2) showed only a stable liquid crystalline phase above Tg. Second, with the increasing length of alkoxy tails, the P‐OCm (m = 4, 6, 8) presented a re‐entrant isotropic phase above Tg and a liquid crystalline phase at higher temperature. Third, the P‐OCm (m = 10, 12, 14, 16, 18) exhibited an unusual re‐entrant isotropic phase which was separating SmA (in low temperature) and columnar phases (in high temperature). It was the first time that mesogen‐jacketed liquid crystalline polymers formed smectic phase, re‐entrant isotropic phase, and columnar phases in one polymer due to the microphase separation and the driving force of the entropy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
A novel photoactive, liquid‐crystalline, hyperbranched benzylidene polyester (PAHBP) was synthesized from a dilute solution of an A2 photoactive monomer [bis(4‐hydroxybenzylidene)‐4‐phenyl cyclohexanone] and a B3 monomer (1,3,5‐benzene tricarboxylic acid chloride) by the solution polycondensation method in the presence of pyridine as a condensing agent. PAHBP was thoroughly characterized by Fourier transform infrared, 1H and 13C NMR, ultraviolet–visible spectrometry, and gel permeation chromatography. The inherent viscosity of the polymer was 0.35 dL/g in tetrahydrofuran. The degree of branching was 0.53, which confirmed the branched architecture of the polymer. Furthermore, thermogravimetric analysis, differential scanning calorimetry, and polarized optical microscopy were used to examine the thermal stability and thermotropic liquid‐crystalline properties of the hyperbranched polyester. The polymer exhibited a nematic mesophase over a wide range of temperatures. The photoreactivity of PAHBP was studied by photolysis under ultraviolet light. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 53–61, 2006  相似文献   

9.
This article concerns the hydrosilylation polyaddition of 1,4‐bis(dimethylsilyl)benzene ( 1 ) with 4,4′‐diethynylbiphenyl, 2,7‐diethynylfluorene ( 2b ), and 2,6‐diethynylnaphthalene with RhI(PPh3)3 catalyst. Trans‐rich polymers with weight‐average molecular weights (Mw's) ranging from 19,000 to 25,000 were obtained by polyaddition in o‐Cl2C6H4 at 150–180 °C, whereas cis‐rich polymers with Mw's from 4300 to 34,000 were obtained in toluene at 0 °C–r.t. These polymers emitted blue light in 4–81% quantum yields. The cis polymers isomerized into trans polymers upon UV irradiation, whereas the trans polymers did not. The device having a layer of polymer trans‐ 3b obtained from 1 and 2b demonstrated electroluminescence without any dopant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2774–2783, 2004  相似文献   

10.
11.
Poly((2‐Alkylbenzo[1,2,3]triazole‐4,7‐diyl)vinylene)s (pBTzVs) synthesized by Stille coupling show different absorption spectra, solid‐state morphology, and photovoltaic performance, depending on straight‐chain versus branched‐chain (pBTzV12 and pBTzV20) pendant substitution. Periodic boundary condition density functional computations show limited alkyl pendant effects on isolated chain electronic properties; however, pendants could influence polymer backbone conjugative planarity and polymer solid film packing. The polymers are electronically ambipolar, with best performance by pBTzV12 with hole and electron transport mobilities of 4.86 × 10?6 and 1.96 × 10?6 cm2 V?1 s?1, respectively. pBTzV12 gives a smooth film morphology, whereas pBTzV20 gives a very different fibrillar morphology. For ITO/PEDOT:PSS/(1:1 w/w polymer:PC71BM)/LiF/Al devices, pBTzV12 gives power conversion efficiency (PCE) up to 2.87%, and pBTzV20 gives up to PCE = 1.40%; both have open‐circuit voltages of VOC = 0.6–0.7 V. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1539–1545  相似文献   

12.
Liquid‐crystalline, segmented polyurethanes with methoxy–biphenyl mesogens pendant on the chain extender were synthesized by the conventional prepolymer technique and esterification reaction. Two, side‐chain, liquid‐crystalline (SCLC) polyurethanes with mesogens having spacers of six and eight methylene units were prepared. The structures of the mesogenic units and SCLC polyurethanes were confirmed by Fourier transform infrared spectroscopy and 1H NMR. Polymer properties were also examined by solubility tests, water uptakes, and inherent viscosity measurements. Differential scanning calorimetry studies indicated that the transition temperature of the isotropic to the liquid‐crystalline phase decreased with increasing spacer length. Wide‐angle X‐ray diffraction (WAXD) studies revealed the existence of liquid‐crystalline phases for both SCLC polyurethanes. Polarized optical microscopic investigations further confirmed the thermotropic liquid‐crystalline behaviors and nematic mesophases of both samples. Thermogravimetric analysis displayed better thermal stabilities for both SCLC polymers and indicated that the presence of mesogenic side chains may increase the thermal stability of segmented polyurethanes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 290–302, 2004  相似文献   

13.
Three new types of hyperbranched photoactive liquid crystalline siloxane polymers containing azo moieties were synthesized using click chemistry methodology. The polymers were soluble in most of the polar solvents like chloroform, tetrahydrofuran, dimethylformamide, dimethyl sulphoxide and dichloromethane. The molecular weights of the polymers were in the range of 9000–12,000 g mol?1. The trans‐cis photoisomerization of the polymer were studied both under UV radiation and dark. The isomerization rate constants were found to be in the range of 0.7–1.4 × 10?2 sec?1 and 7.0 × ?2.5 × 10?5 sec?1. The thermotropic behavior of the polymers was studied by using polarizing optical microscopy and differential scanning calorimetry, respectively. The polymers P1 and P2 showed liquid crystalline texture characteristic of nematic phase. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
A novel series of well‐defined alternating poly[2,7‐(9,9‐dihexylfluorenyl)‐alt‐pyridinyl] (PDHFP) with donor‐acceptor repeat units were synthesized using palladium (0)‐catalyzed Suzuki cross‐coupling reactions in good to high yields. In this series of alternating polymers, 2, 7‐(9,9‐dihexylfluorenyl) was used as the light emitting unit, and the electron deficient pyridinyl unit was employed to provide improved electron transportation. These polymers were characterized by 1H‐NMR and 13C‐NMR, gel permeation chromatography (GPC), thermal analyses, and UV‐vis and fluorescence spectroscopy. The glass transition temperature of copolymers in nitrogen ranged from 110 to 148 °C, and the copolymers showed high thermal stabilities with high decomposition temperatures in the range of 350 to 390 °C in air. The difference in linkage position of pyridinyl unit in the polymer backbone has significant effects on the electronic and optical properties of polymers in solution and in film phases. Meta‐linkage (3,5‐ and 2,6‐linkage) of pyridinyl units in the polymer backbone is more favorable to polymer for pure blue emission and prevention of aggregation of polymer chain than para‐linkage (2,5‐linkage) of the pyridinyl units. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4792–4801, 2004  相似文献   

15.
A homologous series of side‐chain liquid crystalline (SCLC) poly{[N‐[10‐((4‐(((4′‐n‐hexyloxy)benzoyl)oxy)phenoxy)carbonyl)‐n‐decyl]maleimide]‐co‐[N‐(n‐octadecyl)maleimide]} [(ME6)‐co‐(MI‐18)] random copolymers with various MI‐18 contents have been synthesized and their properties studied. The high content in threo‐disyndiotactic sequences of the maleimide main chain seems responsible for the stability of the highly ordered smectic mesophase. The relationship between structure and composition on thermotropic mesophase was investigated by polarizing optical microscopy, differential scanning calorimetry, and X‐ray diffraction. For copolymers with mesogenic unit contents less than ~0.655 molar fraction the transition from (SA) texture to isotropic (I) is maintained, as shown by the TCl, ΔHCl and ΔSCl amounts and intermolecular spacing 4.42–4.53 Å and intralayer correlation lengths of 44.2–45.2 Å. The layer thickness does not appreciably depend on copolymer composition. However, copolymers with non‐mesogenic comonomer MI‐18 molar contents larger than >0.655 molar fraction X(M), are no longer liquid crystalline materials, despite its packing is preserved without any detectable appearance of birefringence. Thermodynamic boundaries of the liquid crystalline state have been established through a phase diagram. The properties of this n‐hexyloxy pendant group‐based series are compared to those of the analogous materials containing methoxy pendant groups (ME1), and differences are accounted for in terms of the local side‐chain packing within the mesophase. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
A series of novel liquid‐crystalline copolymers based on fluorene and triphenylamine‐containing oligo(p‐phenylenevinylene) derivatives have been synthesized according to the Suzuki polymerization method. The structures, optical and electrochemical properties of the copolymers were characterized by 1H NMR, 13C NMR, GPC, UV–vis, photoluminescence (PL) spectroscopy, and cyclic voltammetry (CV), respectively. The thermotropic phase behavior of the copolymers was investigated by using differential scanning calorimetry (DSC) and polarized optical microscope (POM). All of the copolymers exhibit thermally liquid crystalline properties and represent the characteristic Schlieren textures in a wide temperature range. The effects of the concentrations and chain length of the oligo(phenylenevinylene) units on the thermal properties, liquid crystalline, photo‐ and electroluminescent properties of the copolymers have been investigated in details. Among the copolymers‐based devices with a configuration of ITO/PEDOT:PSS/polymers/Ca/Al, the device based on PF‐LOPV05 exhibits the lowest turn‐on voltage of 3 V and the maximum brightness of 210 cd/m2 at 8.3 V. A single layer device based on the blend of PF/PF‐LOPV05 emits white electroluminescence with CIE coordinates of (0.30, 0.35) at 8 V. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3296–3308, 2009  相似文献   

17.
A series of conjugated hyperbranched polymers, hyperbranched copolymers, and linear polymers containing 2‐pyran‐4‐ylidenemalononitrile (acceptor) and triphenylamine/fluorene (donor) units were synthesized and characterized by FTIR, 1H NMR, thermogravimetric analyses, differential scanning calorimetry, gel permeation chromatography, UV–visible, photoluminescence, and cyclic voltammetry measurements. All the polymers show red‐light emission in the range of 566–656 nm both in solution and in solid state. The quantum efficiency of the polymers was in the range of 56–82%. Among the six polymers synthesized, only polymers containing fluorene units show Tg and polymers based on triphenylamine not exhibit Tg. The band gap of these polymers were found to be reasonably low; hyperbranched copolymer containing fluorene unit shows lowest band gap of 2.18 eV due to the stabilization of LUMO energy level by the electron withdrawing ? CN groups. The thermal and solubility behavior of the polymers were found to be good. All the EL spectra of the devices (indium‐tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/polymer/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline/tris(8‐hydroxyquinoline)aluminum)/LiF/Al) show red‐light emission, and the device fabricated with P3 and P4 shows maximum luminance and luminous efficiency of 4104 cd m?2 and 0.55 cd Å?1 and 3696 cd m?2 and 0.47 cd Å?1, respectively, indicates that they had the best carrier balance. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Alkylene‐ and arylene‐bridged cyclolinear polycarbosilanes (CLPCS) with 1,3‐disilacyclobutane (DSCB) rings incorporated in the main chain of the polymer were prepared by polycondensation between corresponding di‐functional DSCB derivatives and di‐Grignard reagents. Well‐defined, low molecular weight (Mn = 3–5K; DP = 17–26), hexylene‐ and phenylene‐bridged CLPCS polymers were obtained without appreciable ring opening of the DSCB rings. Large exothermic peaks were observed in the DSC for these CLPCSs, which indicated, along with the IR spectra, that crosslinking occurred on heating to about 250 °C via the ring opening of the embedded, alternating, DSCB rings. Moreover, PB‐CLPCS undergoes photochemically induced crosslinking on UV irradiation to form crosslinked polycarbosilane network films. The spin‐cast, cured, films of these CLPCSs exhibit relatively low dielectric constants and promising thermal and mechanical properties for applications in electronics, for example, directly UV‐photoimprinted low‐k dielectrics. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1547–1557  相似文献   

19.
A series of viologen polymers with bromide, tosylate, and triflimide as counterions were prepared by either the Menshutkin reaction or metathesis reaction in a common organic solvent. Their polyelectrolyte behavior in methanol was determined by solution viscosity measurements, and their chemical structures were determined by Fourier transform infrared and Fourier transform NMR spectroscopy. They were characterized for their thermotropic liquid‐crystalline properties with a number of experimental techniques. Each of the viologen polymers with organic counterions had a low melting transition or fusion temperature above which it formed either a high‐order smectic phase or a low‐order smectic phase. Each of them also exhibited a smectic‐to‐isotropic transition. The ranges of the liquid‐crystalline phase were 80–88 °C for viologen polymers with tosylate as a counterion and 120–146 °C for viologen polymers with triflimide as a counterion. They had excellent thermal stability. The ranges of thermal stability were 288–329 °C for viologen polymers with tosylate as a counterion and 343–350 °C for viologen polymers with triflimide as a counterion. The fluorescence property for all of the viologen polymers in either aqueous or methanol solution was also included in this study. For example, the viologen polymer containing the 4,4′‐bipyridinium and p‐xylyl units along the backbone of the polymer chain with triflimide as a counterion had an absorption spectrum (λmax = 265 nm), an excitation spectrum (λex values = 357, 443, and 454 with monitoring at 533 nm), and an emission spectrum (λem = 536 nm with excitation at 430 and 450 nm) in methanol. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 659–674, 2002; DOI 10.1002/pola.10134  相似文献   

20.
Various star‐shaped poly(phenoxy propylene sulfide)s (PPSs) bearing curable end groups were synthesized by the functionalization of the propagating ends of star‐shaped poly(PPS) with various electrophilies. The functionalization with chloromethyl styrene proceeded quantitatively, and afforded polymers with Mn almost agreed with theoretical value and narrow Mw/Mn. The photocuring conditions were optimized, and the addition of 10 wt % of poly(ethylene glycol) diacrylate was effective to attain sufficient crosslinking. The photocuring reaction of the end‐functionalized poly(PPS) films cast on silicon wafers was conducted by UV irradiation. The cured poly (PPS)s became insoluble in THF, supporting the sufficient crosslinking. Developing of a cured polymer yielded a negative photoresist pattern. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号