首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel 5‐Z‐amino‐δ‐valerolactone (5‐NHZ‐VL) was synthesized with an aim to prepare degradable polyesters and copolyesters having amino pendant groups. Following a straightforward and efficient synthetic pathway, 5‐NHZ‐VL was obtained in only two steps and up to 50% yield. The monomer was fully characterized by 1H NMR, 13C NMR, ESI mass spectrometry, and HPLC. Various conventional conditions were tested for this lactone ring‐opening polymerization and led to the novel corresponding poly(5‐NHZ‐VL) (Mn = 7000 g/mol; PD = 1.2). Following this homopolymerization, 5‐NHZ‐VL was copolymerized with ε‐caprolactone to generate a family of copolyesters with an amino‐group content ranging from 10 to 80%. Finally, the polyelectrolyte poly(5‐NH3+‐VL) was recovered by removal of the protecting group under acidic conditions, and integrity of the polyester backbone was confirmed by 1H NMR. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

2.
The ring‐opening polymerization of L ‐lactide initiated by single‐component rare‐earth tris(4‐tert‐butylphenolate)s was conducted. The influences of the rare‐earth elements, solvents, temperature, monomer and initiator concentrations, and reaction time on the polymerization were investigated in detail. No racemization was found from 70 to 100 °C under the examined conditions. NMR and differential scanning calorimetry measurements further confirmed that the polymerization occurred without epimerization of the monomer or polymer. A kinetic study indicated that the polymerization rate was first‐order with respect to the monomer and initiator concentrations. The overall activation energy of the ring‐opening polymerization was 79.2 kJ mol?1. 1H NMR data showed that the L ‐lactide monomer inserted into the growing chains with acyl–oxygen bond cleavage. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6209–6215, 2004  相似文献   

3.
A reversible addition–fragmentation chain transfer (RAFT) agent, 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN), was synthesized and applied to the RAFT polymerization of glycidyl methacrylate (GMA). The polymerization was conducted both in bulk and in a solvent with 2,2′‐azobisisobutyronitrile (AIBN) as the initiator at various temperatures. The results for both types of polymerizations showed that GMA could be polymerized in a controlled way by RAFT polymerization with CPDN as a RAFT agent; the polymerization rate was first‐order with respect to the monomer concentration, and the molecular weight increased linearly with the monomer conversion up to 96.7% at 60 °C, up to 98.9% at 80 °C in bulk, and up to 64.3% at 60 °C in a benzene solution. The polymerization rate of GMA in bulk was obviously faster than that in a benzene solution. The molecular weights obtained from gel permeation chromatography were close to the theoretical values, and the polydispersities of the polymer were relatively low up to high conversions in all cases. It was confirmed by a chain‐extension reaction that the AIBN‐initiated polymerizations of GMA with CPDN as a RAFT agent were well controlled and were consistent with the RAFT mechanism. The epoxy group remained intact in the polymers after the RAFT polymerization of GMA, as indicated by the 1H NMR spectrum. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2558–2565, 2004  相似文献   

4.
Because of the inherent characteristics of the thiol–ene step growth mechanism in preparation of thiol–ene photopolymer clay nanocomposites, the ratio between thiol and ene functional groups at and near the organoclay surfaces may have a significant effect on the polymerization behavior. This study investigates the influence of monomer composition and the type of polymerizable organoclay on thiol–acrylate photopolymerization behavior in preparation of photocurable clay nanocomposite systems. To this end, two types of polymerizable organoclays with acrylate or thiol functional group on the clay surfaces were compared in monomer compositions with different polarity and functionality. Real‐time infrared spectroscopy was used to characterize polymerization behavior in conjunction with photo‐DSC. The degree of clay exfoliation was evaluated using small angle X‐ray scattering and correlated with photopolymerization behavior. Higher chemical compatibility of components induced enhanced clay exfoliation resulting in increase in photopolymerization rate. By affecting the stoichiometric ratio of functional groups in the clay gallery, thiolated organoclays enhance thiol–ene reaction, whereas acrylated organoclays encourage acrylate homopolymerization. In addition, inducing more propagating thiyl radicals on the organoclay surfaces by increasing functionality of thiol monomer also facilitates thiol–ene copolymerization, whereas the increase of acrylate functionality reduces final thiol conversion. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
The bulk polymerization of styrene initiated by ?‐caprolactam (CL) and n‐dodecyl mercaptan (RSH) has been explored. This novel polymerization system shows living characteristics. For example, the molecular weight of the resulting polymers increases with conversion, and the system has the ability to form diblock copolymers and so forth. The polymer chain end contains thiol and lactam structures, which we have investigated with Fourier transform infrared, 1H NMR, and 13C NMR techniques. Electron spin resonance spectra and theoretical calculations by the Hartree–Fock methods have been used to examine the mechanism. The results reveal that the initial polymerization starts from thiol via a chain‐transfer reaction, and the propagation proceeds by the insertion of a monomer between the terminal group and the intermediate structure of lactam. Finally, the polymerization kinetics have been examined. The polymerization rate varies linearly with the concentration of CL and RSH, and this confirms the mechanism. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4976–4993, 2004  相似文献   

6.
A novel and efficient strategy for the synthesis of nonisocyanate polyurethanes has been developed via thiol–ene self‐photopolymerization. An aliphatic thiol–ene carbamate monomer (allyl(2‐mercaptoethyl)carbamate, AMC) was synthesized by a one‐step synthesis procedure, from cysteamine and allyl chloroformate. The urethane group was therefore incorporated directly into the monomer precursor, avoiding the problems associated to toxic isocyanates. AMC was successfully stabilized with the radical inhibitor pyrogallol (1% wt). In addition, the use of phenyl phosphonic acid as coadditive allowed its stabilization for lower concentrations of pyrogallol (0.1% wt). AMC was directly transformed into thermoplastic polyurethane (TPU) through thiol–ene photopolymerization by UV‐irradiation at 365 nm. The obtained TPU presented semi‐crystalline nature and very high thermal stability (T5% ~325 °C). It was found that high concentrations of pyrogallol decreased the reaction rate and final conversion of photopolymerization. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3017–3025  相似文献   

7.
Multiarm star polymers containing thiol‐reactive maleimide groups at their core have been synthesized by utilization of atom transfer radical polymerization (ATRP) of various methacrylates using a masked maleimide containing multiarm initiator. One end of the initiator contains multiple halogen groups that produce the star architecture upon polymerization and the other end contains a masked maleimide functional group. Unmasking of the maleimide group after the polymerization provides the thiol reactive maleimide core that is widely used in bioconjugation. Functionalization of the core maleimide group with a thiol containing tripeptide was used to demonstrate facile reactivity of the core of these multiarm polymers under reagent‐free conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2546–2556, 2010  相似文献   

8.
Sequential thiol‐ene/thiol‐ene and thiol‐ene/thiol‐yne reactions have been used as a facile and quantitative method for modifying end‐groups on an N‐isopropylacrylamide (NIPAm) homopolymer. A well‐defined precursor of polyNIPAm (PNIPAm) was prepared via reversible addition‐fragmentation chain transfer (RAFT) polymerization in DMF at 70 °C using the 1‐cyano‐1‐methylethyl dithiobenzoate/2,2′‐azobis(2‐methylpropionitrile) chain transfer agent/initiator combination yielding a homopolymer with an absolute molecular weight of 5880 and polydispersity index of 1.18. The dithiobenzoate end‐groups were modified in a one‐pot process via primary amine cleavage followed by phosphine‐mediated nucleophilic thiol‐ene click reactions with either allyl methacrylate or propargyl acrylate yielding ene and yne terminal PNIPAm homopolymers quantitatively. The ene and yne groups were then modified, quantitatively as determined by 1H NMR spectroscopy, via radical thiol‐ene and radical thiol‐yne reactions with three representative commercially available thiols yielding the mono and bis end functional NIPAm homopolymers. This is the first time such sequential thiol‐ene/thiol‐ene and thiol‐ene/thiol‐yne reactions have been used in polymer synthesis/end‐group modification. The lower critical solution temperatures (LCST) were then determined for all PNIPAm homopolymers using a combination of optical measurements and dynamic light scattering. It is shown that the LCST varies depending on the chemical nature of the end‐groups with measured values lying in the range 26–35 °C. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3544–3557, 2009  相似文献   

9.
Thiol‐substituted α‐aminoalkylphenone was newly developed as a radical photoinitiator. Introduction of the thiol group drastically improved photosensitivity in an alkaline developable resist formulation composed of a prepolymer and a multifunctional acrylate monomer. The improvement in the photocuring speed was explained by a mechanism based on chain transfer reaction of the thiol group. Time‐resolved electron spin resonance (ESR) spectroscopy indicated that the thiol group attached to the chromophore does not influence the photochemical process to generate primary radicals. The photoinitiation of α‐aminoalkylphenone can be spectrally sensitized by 2,4‐diethylthioxanthone (DETX). However, thiol‐substituted α‐aminoalkylphenone showed smaller spectral sensitization than the corresponding compound without a thiol group. Time resolved laser flash photolysis indicated that the rate constant of the quenching of the triplet state of DETX by thiol‐substituted α‐aminoalkylphenone is twice as large as that by the corresponding one without a thiol group. This suggests that, besides energy transfer from DETX in the excited triplet state to the α‐aminoalkylphenone, the thiol group quenches the excited triplet state of DETX via charge transfer and/or hydrogen transfer, as supported by the ESR analysis using a spin trapping technique, and lowers the efficiency of the spectral sensitization effect. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1684–1695, 2005  相似文献   

10.
Development of effective organocatalysts for the living ring‐opening polymerization (ROP) of lactones is highly desired for the preparation of biocompatible and biodegradable polyesters with controlled microstructures and physical properties. Herein, a new class of hydrogen‐bond donating bisurea catalysts is reported for the ROP of lactones under solvent‐free conditions. ROP of lactones mediated by the bisurea/7‐methyl‐1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (MTBD) catalyst exhibits a living/controlled manner, affording the polymers and copolymers with the well‐defined structure, predictable molecular weight, narrow molecular weight distribution, and high selectivity for monomer at low catalyst loadings at ambient temperature. The possible mechanism of bisurea/MTBD‐catalyzed ROP of lactones is proposed, in which the bisurea activates the carbonyl group of lactones while MTBD facilitates the nucleophilic attack of the initiating/propagating alcohol by hydrogen bonding. Moreover, the poly(ε‐caprolactone‐co‐δ‐valerolactone) [P(CL‐co‐VL)] random copolymers with various compositions were synthesized using the bisurea/MTBD catalyst. The measurements of thermal properties and crystalline structure demonstrate that the CL and VL units are cocrystallized in the crystalline phase of P(CL‐co‐VL) copolymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 90–100  相似文献   

11.
Binaphthyl‐diyl hydrogen phosphate has been assessed for the first time as a catalyst for the ring‐opening polymerization of ε‐caprolactone (CL) and δ‐valerolactone (VL). In the presence of benzyl alcohol as coinitiator at 40–60 °C, the polymerization is quantitative and controlled both in terms of dispersity and of number‐average molecular weight corresponding to the monomer/initiator ratio. The use of a selectively protected D ‐glucose derivative bearing the primary C6 hydroxyl group as initiator leads to the quantitative end‐functionalization of the polyesters in rather short reaction times (ca. 10 min at 60 °C for δ‐VL) with dispersities around 1.08–1.10. Methyl‐α‐D ‐glucopyranoside has been used as a carbohydrate polyol initiator in bulk. The initiation efficiency is partial, leading to hydrophilic carbohydrates functionalized polylactones in a one‐step procedure. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
Here we report on the coordination polymerization of a vinyl‐functionalized butadiene monomer, 3‐methylenehepta‐1,6‐diene (MHD) with exclusive conjugated diene chemoselectivity, high 1,2‐regioselectivity and moderate isotacticity (1,2‐selectivity > 99%, mm triad = 93%). Random copolymers of MHD and other conjugated diene (isoprene or myrcene) are also synthesized. The pendent vinyl groups of MHD homo or copolymers could be quantitatively converted into various functional groups via thiol‐ene click reaction. The resulting functionalized polybutadiene‐based material display versatile thermal and surface properties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1031–1039  相似文献   

13.
Aliphatic hyperbranched poly(amide‐imide) was facilely prepared by employing a functional thiolactone‐maleimide monomer. Highly efficient, selective and quantitative properties of amine‐maleimide Michael addition and aminolysis of a thiolactone guaranteed the generation of an ABB' thiol‐yne intermediate without side products, followed by consecutive thiol‐yne click reaction in one‐pot. The hyperbranched structure of the poly(amide‐imide) was confirmed by NMR spectroscopy and triple‐detector GPC/SEC analysis. Additionally, due to the presence of aminosuccinimide fluorophores and intrinsic physical property of hyperbranched polymers, this aliphatic hyperbranched poly(amide‐imide) possessed solvent‐dependent emission and presented good solubility in various organic solvents. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2053–2060  相似文献   

14.
ABC type miktoarm star copolymer with polystyrene (PS), poly(ε‐caprolactone) (PCL) and poly(ethylene glycol) (PEG) arms was synthesized using controlled polymerization techniques in combination with thiol‐ene and copper catalyzed azide‐alyne “click” reactions (CuAAC) and characterized. For this purpose, 1‐(allyloxy)‐3‐azidopropan‐2‐ol was synthesized as the core component in a one‐step reaction with high yields (96%). Independently, ω‐thiol functionalized polystyrene (PS‐SH) was synthesized in a two‐step protocol with a very narrow molecular weight distribution. The bromo end function of PS obtained by atom transfer radical polymerization was first converted to xanthate function and then reacted with 1, 2‐ethandithiol to yield desired thiol functional polymer (PS‐SH). The obtained polymer was grafted onto the core by thiol‐ene click chemistry. In the following stage, ε‐caprolactone monomer was polymerized from the core by ring opening polymerization (ROP) using tin octoate as catalyst through hydroxyl groups to form the second arm. Finally, PEG‐acetylene, which was simply synthesized by the esterification of Me‐PEG and 5‐pentynoic acid, was clicked onto the core through azide groups present in the structure. The intermediates at various stages and the final miktoarm star copolymer were characterized by 1H NMR, FTIR, and GPC measurements. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Thiol‐isocyanate‐acrylate ternary networks were formed by the combination of thiol‐isocyanate coupling, thiol‐acrylate Michael addition, and acrylate homopolymerization. This hybrid polymerization reaction sequence was preferentially controlled by using phosphine catalyst systems in combination with photolysis. The reaction kinetics of the phosphine/acrylate thiol‐isocyanate coupling reactions were systematically investigated by evaluating model, small molecule reactions. The thiol‐isocyanate reaction was completed within 1 min while the thiol‐acrylate Michael addition reaction required ~10 min. Both thiol‐isocyanate coupling and thiol‐acrylate Michael addition reactions involving two‐step anionic processes were found to be both quantitative and efficient. However, the thiol‐isocyanate coupling reaction was much more rapid than the thiol‐acrylate Michael addition, promoting initial selectivity of the thiol‐isocyanate reaction in a medium containing thiol, isocyanate, and acrylate functional groups. Films were prepared from thiol‐isocyanate‐acrylate ternary mixtures using 2‐acryloyloxyethylisocyanate and di‐, tri‐, and tetra‐functional thiols. The sequential thiol‐isocyanate, thiol‐acrylate, and acrylate homopolymerization reactions were monitored by infrared spectroscopy during film formation, whereas thermal and mechanical properties of the films were evaluated as a function of the chemical composition following polymerization. The results indicate that the network structures and material properties are tunable over a wide range of properties (Tg ~ 14–100 °C, FWHM ~ 8–46 °C), while maintaining nearly quantitative reactions, simply by controlling the component compositions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3255–3264, 2010  相似文献   

16.
Since extraction of the naturally occurring mussel‐foot proteins is expensive and time‐consuming, routes towards synthetic analogues are continuously being explored. Often, these methods involve several protection and deprotection steps, making the synthesis of synthetic analogues time‐consuming and expensive as well. Herein, we show that UV‐initiated thiol‐ene coupling between a thiol‐functional dopamine derivative and an allyl‐functional aliphatic polycarbonate can be used as a fast and facile route to dopa‐functional materials. Different thiol‐to‐allyl ratios and irradiation protocols were used and it was found that nearly 50% of the allyl groups could be functionalized with dopa within short reaction times, without the need of protecting the catechol. It is also demonstrated herein that the dopa‐functional polymers can be used to form self‐healing gels through complexation with Fe3+ ions at increased pH. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2370–2378  相似文献   

17.
Thiol‐terminated polyisobutylene (α,ω‐PIB‐SH) was synthesized from thiourea and α,ω‐bromine‐terminated PIB in a three‐step, one‐pot procedure, using a cosolvent system of 1:1 (v:v) heptane:dimethylformamide. The initial alkylisothiouronium salt was produced at 90 °C. Aqueous base hydrolysis at 110 °C resulted in thiolate chain ends, which were re‐acidified to form telechelic PIB‐SH. 1H and 13C NMR confirmed thiol functionality and complete terminal halogen conversion. Thiol‐based “click” reactions were used to demonstrate PIB‐SH utility. Alkyne‐terminated PIB was synthesized by a phosphine‐catalyzed thiol‐ene Michael addition with propargyl acrylate. Reaction of this product with 6‐mercaptohexanol produced tetrahydroxy‐functional PIB by a sequential thiol‐ene/thiol‐yne procedure. 1H NMR confirmed the structures of both products. PIB‐SH was reacted with isocyanates in the presence of base to produce polythiourethanes. A model reaction used phenyl isocyanate in THF with catalytic triethylamine. Similar conditions were used to produce PIB‐based thiourethanes with and without a small‐molecule chain extender. Increased molecular weights and thiol group conversion were observed with GPC and 1H NMR, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
Polymeric forms of ionic liquids may have many potential applications because of their high thermal stability and ionic nature. They are generally synthesized by conventional free‐radical polymerization. Here we report a living/controlled free‐radical polymerization of an ionic liquid monomer, 2‐(1‐butylimidazolium‐3‐yl)ethyl methacrylate tetrafluoroborate (BIMT), via atom transfer radical polymerization. Copper bromide/bromide based initiator systems polymerized BIMT very quickly with little control because of fast activation but slow deactivation. With copper chloride as the catalyst and trichloroacetate, CCl4, or ethyl α‐chlorophenylacetate as the initiator, BIMT was polymerized at 60 °C in acetonitrile with first‐order kinetics with respect to the monomer concentration. The molecular weight was linearly dependent on the conversion. The monomer concentration strongly affected the polymerization: a low monomer concentration caused the polymerization to be incomplete, probably because of catalyst disproportionation in polar solvents. The addition of a small amount of pyridine suppressed such disproportionation, but a further increase in the amount of pyridine greatly slowed the polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5794–5801, 2004  相似文献   

19.
This work describes a facile method by which a polymerizable hindered amine light stabilizer, 4‐(10‐undecylidene)‐2,2,6,6‐tetramethylpiperidine, was prepared in a single‐step procedure by means of a Wittig reaction. The monomer was successfully copolymerized with ethylene with a rac‐[dimethylsilylenebis(4,5,6,7‐tetrahydro‐1‐indenyl)]zirconium dichloride/methylalumoxane catalyst system. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1350–1355, 2004  相似文献   

20.
Radical catalyzed thiol‐ene reaction has become a useful alternative to the Hüisgen‐type azide‐yne click reaction as it helps expand the variability in reaction conditions as well as the range of clickable entities. In this study, the direct generation of a hyperbranched polyether (HBPE) having decyl units at the periphery and a pendant allyl group on every repeat unit of the polymer backbone is described; the allyl groups serve as a reactive handle for postpolymerization modifications and permits the generation of a variety of internally functionalized HBPEs. In this design, the AB2 monomer carries two decylbenzyl ether units (B‐functionality), an aliphatic ? OH (A‐functionality) and a pendant allyl group within the spacer segment; polymerization of the monomer readily occurs at 150 °C via melt transetherification process by continuous removal of 1‐decanol under reduced pressure. The resulting HBPE has a hydrophobic periphery due to the presence of numerous decyl chains, while the allyl groups that remain unaffected during the melt polymerization provides an opportunity to install a variety of functional groups within the interior; thiol‐ene click reaction with two different thiols, namely 3‐mercaptopropionic acid and mercaptosuccinic acid, generated interesting amphiphilic structures. Preliminary field emission scanning electron microscope (FESEM) and Atomic Force Microscopy (AFM) imaging studies reveal the formation of fairly uniform spherical aggregates in water with sizes ranging from 200 to 400 nm; this suggests that these amphiphilic HBPs is able to reconfigure to generate jellyfish‐like conformations that subsequently aggregate in an alkaline medium. The internal allyl functional groups were also used to generate intramolecularly core‐crosslinked HBPEs, by the use of dithiol crosslinkers; gel permeation chromatography traces provided clear evidence for reduction in the size after crosslinking. In summary, we have developed a simple route to prepare core‐clickable HBPEs and have demonstrated the quantitative reaction of the allyl groups present within the interior of the polymers; such HB polymeric systems that carry numerous functional groups within the core could have interesting applications in analyte sequestration and possibly sensing, especially from organic media. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4125–4135  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号