首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The solution behavior of spherical dendrimers as well as hybrid-linear dendritic diblock copolymers has been extensively studied, and the size, shape, and ability of these polymers to encapsulate small molecules have led to their comparison with traditional micelles. We have recently reported the synthesis of a new dendritic copolymer architecture, the linear-dendritic rod diblock copolymer, and in this work, we examine the solution behavior of these unique polymers in methanol at 25 degrees C, using dynamic light scattering and intrinsic viscosity measurements. The diblock copolymers consist of a linear poly(ethylene oxide)-poly(ethylene imine) diblock copolymer backbone around which poly(amido amine) branches have been divergently synthesized from the poly(ethylene imine) block. The hydrodynamic radii and the viscometric radii of the polymers were found to increase slowly with increasing generation up to generation 3.5; however, after generation 3.5, the radii were found to increase very rapidly. This increase can be explained by an elongation of the dendritic block into a more rodlike configuration and a corresponding breakdown of the spherical approximation used to calculate the radii. The intrinsic viscosity of the amine and ester terminated polymers was found to follow two very different trends at low generation; however, at higher generations, they followed similar, yet slightly different, curves with the values for the amine terminated polymers only a little larger than those of the ester terminated polymers. At low generations, the chemistry of the end groups and its interaction with the solvent were found to be more important, whereas at higher generations, the highly branched nature of the dendritic block was the more important factor. For the ester terminated polymers, a maximum in the intrinsic viscosity occurred at generation 1.5. Since this maximum occurred at a much lower generation number than is traditionally seen for spherical dendrimers, new scaling relations for the intrinsic viscosity of dendritic rod polymers were developed and were found to support this observation. A minimum in the intrinsic viscosity was also observed at generation 3.5 for the ester terminated polymers and a minimum or leveling off in the intrinsic viscosity at generation 4.0 was found for the amine terminated polymers, which can be attributed to the transitioning of the polymers to a more elongated, rodlike shape and the increased influence of the shape factor on the intrinsic viscosity.  相似文献   

2.
The purpose of this study is to correlate the nano‐organization in water of coil‐rod‐coil amphiphilic block copolymers constituted of a conjugated segment to their optoelectronic properties. The ABA block copolymer structures, easily achieved via coupling reactions, are based on conjugated rod of dihexylfluorene and 3,4‐ethylenedioxythiophene units linked to two flexible poly(ethylene oxide) or poly[(ethylene oxide)‐ran‐(propylene oxide)] chains. These well‐defined copolymers exhibited a range of specific morphologies in water, a good solvent of coil blocks and a bad solvent of the conjugated rod. Particularly, vesicles and micelles with spherical, cylindrical, or elongated shape were noticed. Correlations were attempted to be established between the weight percent of the conjugated sequence contained in the copolymers, the morphology of the nanostructures obtained by self‐assembly in solution and the resulting optical properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4602–4616, 2008  相似文献   

3.
The objective of this review is to organize literature data on the thermodynamic properties of salt‐containing polystyrene/poly(ethylene oxide) (PS/PEO) blends and polystyrene‐b‐poly(ethylene oxide) (SEO) diblock copolymers. These systems are of interest due to their potential to serve as electrolytes in all‐solid rechargeable lithium batteries. Mean‐field theories, developed for pure polymer blends and block copolymers, are used to describe phenomenon seen in salt‐containing systems. An effective Flory–Huggins interaction parameter, χeff , that increases linearly with salt concentration is used to describe the effect of salt addition for both blends and block copolymers. Segregation strength, χeffN , where N is the chain length of the homopolymers or block copolymers, is used to map phase behavior of salty systems as a function of composition. Domain spacing of salt‐containing block copolymers is normalized to account for the effect of copolymer composition using an expression obtained in the weak segregation limit. The phase behavior of salty blends, salty block copolymers, and domain spacings of the latter systems, are presented as a function of chain length, composition and salt concentration on universal plots. While the proposed framework has limitations, the universal plots should serve as a starting point for organizing data from other salt‐containing polymer mixtures. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1177–1187  相似文献   

4.
We report the synthesis, characterization, and solvent‐induced structure formation in thin films of an amphiphilic rod‐coil conjugated block copolymer, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide). The diblock copolymers were prepared by a facile click reaction and their characterizations as well as thermal, crystalline, optical properties, and self‐assembly behavior have been investigated in detail. A series of morphologies including two‐phase separated nanostructure, nanofibrils, and their mixed morphology could be obtained depending on the selectivity of solvents to different blocks. Structural analyses demonstrate there is a subtle balance between microphase separation of copolymer and the π‐π stacking of the conjugated P3HT and such balance can be controlled by changing the solvents of different selectivity in solution and the length of P3HT block. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Novel amphiphilic fluorinated ABC‐type triblock copolymers composed of hydrophilic poly(ethylene oxide) monomethyl ether (MeOPEO), hydrophobic polystyrene (PSt), and hydrophobic/lipophobic poly(perfluorohexylethyl acrylate) (PFHEA) were synthesized by atom transfer radical polymerization (ATRP) using N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA)/CuBr as a catalyst system. The bromide‐terminated diblock copolymers poly(ethylene oxide)‐block‐polystyrene (MeOPEO‐b‐PSt‐Br) were prepared by the ATRP of styrene initiated with the macroinitiator MeOPEO‐Br, which was obtained by the esterification of poly(ethylene oxide) monomethyl ether (MeOPEO) with 2‐bromoisobutyryl bromide. A fluorinated block of poly(perfluorohexylethyl acrylate) (PFHEA) was then introduced into the diblock copolymer by a second ATRP process to synthesize a novel ABC‐type triblock copolymer, poly(ethylene oxide)‐block‐polystyrene‐block‐poly(perfluorohexylethyl acrylate) (MeOPEO‐b‐PSt‐b‐PFHEA). These block copolymers were characterized by means of proton nuclear magnetic resonance (1H NMR) and gel permeation chromatography (GPC). Water contact angle measurements revealed that the polymeric coating of the triblock copolymer (MeOPEO‐b‐PSt‐b‐PFHEA) shows more hydrophobic than that of the corresponding diblock copolymer (MeOPEO‐b‐PSt). Bovine serum albumin (BSA) was used as a model protein to evaluate the protein adsorption property and the triblock copolymer coating posseses excellent protein‐resistant character prior to the corresponding diblock copolymer and polydimethylsiloxane. These amphiphilic fluoropolymers can expect to have potential applications for antifouling coatings and antifouling membranes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

7.
We investigated the morphological transitions induced by alkyne/azide Huisgen 1,3‐dipolar cycloaddition reaction in a series of poly(ethylene oxide)‐block‐poly(n‐butyl methacrylate‐random‐propargyl methacrylate) (PEO‐b‐P(nBMA‐r‐PgMA)) diblock copolymers. Studies on the phase behavior of neat diblock copolymers revealed that the interactions between the PEO block and the terminal alkyne groups in the P(nBMA‐r‐PgMA) block significantly affected the miscibility between the two blocks and the crystallization of the PEO block. Phase‐mixed diblock copolymers underwent disorder‐to‐order transitions by blending with Rhodamine B azide and annealing at elevated temperatures. Different morphologies were achieved, not only by controlling the composition of the block copolymer but also by blending the diblock copolymer with different amount of azides. Microphase separated PEO‐b‐P(nBMA‐r‐PgMA) diblock copolymer also exhibited reactivity toward azides, and order‐to‐order transitions were observed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

8.
Poly(ethylene oxide)-b-poly(L-lactic acid) (PEO-PLLA) diblock copolymers were synthesized via a ring opening polymerization from poly(ethylene oxide) and l -lactide. Stannous octoate was used as a catalyst in a solution polymerization with toluene as the solvent. Their physicochemical properties were investigated by using infrared spectroscopy, 1H-NMR spectroscopy, gel permeation chromatography, and differential scanning calorimetry, as well as the observational data of gel-sol transitions in aqueous solutions. Aqueous solutions of PEO-PLLA diblock copolymers changed from a gel phase to a sol phase with increasing temperature when their polymer concentrations are above a critical gel concentration. As the PLLA block length increased, the gel-sol transition temperature increased. For comparison, diblock copolymers of poly(ethylene oxide)-b-poly(l -lactic acid-co-glycolic acid) [PEO-P(LLA/GA)] and poly(ethylene oxide)-b-poly(dl -lactic acid-co-glycolic acid) [PEO-P(DLLA/GA)] were synthesized by the same methods, and their gel-sol transition behaviors were also investigated. The gel-sol transition properties of these diblock copolymers are influenced by the hydrophilic/hydrophobic balance of the copolymer, block length, hydrophobicity, and stereoregularity of the hydrophobic block of the copolymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2207–2218, 1999  相似文献   

9.
Poly(ethylene‐alt‐propylene)‐b‐poly(ethylene oxide) (PEP‐PEO) diblock copolymers were synthesized and added at 4 wt % to 2,2‐bis[4‐(2‐hydroxy‐3‐methacryloxypropoxy)phenyl]propane (BisGMA), a monomer that cures using free radical chemistry. In separate experiments, poly(ethylene glycol) dimethacrylate (PEGDMA) was combined as a secondary monomer with BisGMA and the monomers were loaded with 4 wt % PEP‐PEO. The diblock copolymers self‐assembled into well‐dispersed spherical micelles with PEP cores and PEO coronas. No appreciable change in the final extent of cure of the thermosets was caused by the addition of diblock copolymer, except in the case of BisGMA, where the addition of the block copolymer increased extent of cure by 12%. Furthermore, the extent of cure was increased by 29% and 37% with the addition of 25 and 50 wt % PEGDMA, respectively. Elastic modulus and fracture resistance were also determined, and the values indicate that the addition of block copolymers does not significantly toughen the thermoset materials. This finding is surprising when compared with the large increase in fracture resistance seen in block copolymer‐modified epoxies, and an explanation is proposed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

10.
ABA‐type triblock copolymers and AB‐type star diblock copolymers with poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] hard outer segments and poly(n‐butyl vinyl ether) [poly(NBVE)] soft inner segments were synthesized by sequential living cationic copolymerization. Although both the two polymer segments were composed solely of poly(vinyl ether) backbones and hydrocarbon side chains, they were segregated into microphase‐separated structure, so that the block copolymers formed thermoplastic elastomers. Both the ABA‐type triblock copolymers and the AB‐type star diblock copolymers exhibited rubber elasticity over wide temperature range. For example, the ABA‐type triblock copolymers showed rubber elasticity from about ?53 °C to about 165 °C and the AB‐type star diblock copolymer did from about ?47 °C to 183 °C with a similar composition of poly(2‐AdVE) and poly(NBVE) segments in the dynamic mechanical analysis. The AB‐type star diblock copolymers exhibited higher tensile strength and elongation at break than the ABA‐type triblock copolymers. The thermal decomposition temperatures of both the block copolymers were as high as 321–331 °C, indicating their high thermal stability. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
Reported here is self‐assembly behavior in selective solvent of diblock copolymers with relatively long corona‐forming block compared to core‐forming block. Three diblock copolymers, poly(ethylene glycol) monomethyl ether‐b‐poly(methacryloyl‐L ‐leucine methyl ester), also denoted as MPEG‐b‐PMALM copolymer, were prepared by fixing MPEG block with an average number of repeating units of 115, whereas varying PMALM block with an average number of repeating unit of 44, 23, 9, respectively. Multiple morphologies, such as sphere, cylinder, vesicle, and their coexisted structures from self‐assembly of these diblock copolymers in aqueous media by changing block nonselective solvent and initial polymer concentration used in preparation, were demonstrated directly via TEM observation. These results herein might, therefore, demonstrate as an example that a wide range of morphologies can be accessed not only from “crew‐cut micelles” but also from “star‐micelles” by controlling over preparation strategies. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 364–371, 2010  相似文献   

12.
Four generations of new amphiphilic thermoresponsive linear‐dendritic block copolymers (LDBCs) with a linear poly(N‐vinylcaprolactam) (PNVCL) block and a dendritic poly(benzyl ether) block are synthesized by atom transfer radical polymerization (ATRP) of N‐vinylcaprolactam (NVCL) using dendritic poly(benzyl ether) chlorides as initiators. The copolymers have been characterized by 1H NMR, FTIR, and GPC showing controlled molecular weight and narrow molecular weight distribution (PDI ≤ 1.25). Their self‐organization in aqueous media and thermoresponsive property are highly dependent on the generation of dendritic poly(benzyl ether) block. It is observed for the LDBCs that the self‐assembled morphology changes from irregularly spherical micelles, vesicles, rod‐like large compound vesicles (LCVs), to the coexistence of spherical micelles and rod‐like LCVs, as the generation of the dendritic poly(benzyl ether) increases. The results of a cytotoxicity study using an MTT assay method with L929 cells show that the LDBCs are biocompatible. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 300–308  相似文献   

13.
Rod–coil amphiphilic diblock copolymers, consisting of oligo(p‐phenylenevinylene) (OPV) as a rod and hydrophobic block and poly(ethylene oxide) (PEO) as a coil and hydrophilic block, were synthesized by a convergent method. The aggregation behavior of the block copolymers in a selective solvent (tetrahydrofuran/H2O) was probed with the absorption and emission of the OPV block. With increasing H2O concentration, the absorption maximum was blueshifted, the emission from the molecularly dissolved OPV decreased, and that from the aggregated OPV increased. This indicated that the OPV blocks formed H‐type aggregates in which the OPV blocks aligned in a parallel orientation with one another. The transmission electron microscopy observation revealed that the block copolymers with PEO weight fractions of 41 and 62 wt % formed cylindrical aggregates with a diameter of 6–8 nm and a length of several hundreds nanometers, whereas the block copolymer with 79 wt % PEO formed distorted spherical aggregates with an average diameter of 13 nm. Furthermore, the solubilization of an OPV homooligomer with the block copolymer was studied. When the total polymer concentration was less than 0.1 wt %, the block copolymer solubilized OPV with a 50 mol % concentration. The structure of the aggregates was a cylinder with a relatively large diameter distribution. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1569–1578, 2005  相似文献   

14.
A novel amphiphilic diblock copolymer, consisting of dendronized polymethacrylate‐b‐poly(ethylene oxide), was synthesized via atom transfer radical polymerization; from it, micellelike aggregates of various morphologies, prepared under near‐equilibrium conditions, were studied with transmission electron microscopy and scanning electron microscopy. The effects of various factors on the aggregate morphologies of the amphiphilic copolymer, such as the water content, the copolymer concentration, and the type of common solvent, were investigated systematically. The unique architecture of the block copolymer led to morphological variety and peculiarities such as dendritic and shuttle‐shaped aggregates, which could be attributed to the effective packing of the bulky side chains, that is, another driving force for the aggregates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2291–2297, 2005  相似文献   

15.
Amphiphilic block copolymers containing β‐lactam groups on the polyisoprene block were synthesized from poly(isoprene‐b‐ethylene oxide) (IEO) diblock copolymer precursors, prepared by anionic polymerization. β‐Lactam functionalization was achieved via reaction of the polyisoprene (PI) block with chlorosulfonyl isocyanate and subsequent reduction. The resulting block copolymers were molecularly characterized by SEC, FTIR, and NMR spectroscopies and DSC. Functionalization was found to proceed in high yields, altering the solubility properties of the PI block and those of the functionalized diblocks. Hydrogen bond formation is assumed to be responsible for the decreased crystallinity of the poly(ethylene oxide) block (PEO) in the bulk state as indicated by DSC measurements. The self‐assembly behavior of the β‐lactam functionalized poly(isoprene‐b‐ethylene oxide) copolymers (LIEO) in aqueous solutions was studied by dynamic light scattering (DLS), static light scattering (SLS), fluorescence spectroscopy, and atomic force microscopy (AFM). Nearly spherical loose aggregates were formed by the LIEO block copolymers, having lower aggregation numbers and higher cmc values compared to the IEO precursors, as a result of the increased polarity of the β‐lactam rings incorporated in the PI blocks. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 24–33, 2010  相似文献   

16.
Poly(ethylene imine)‐graft‐poly(ethylene oxide) (PEI‐g‐PEO) copolymers were synthesized via Michael addition reaction between acryl‐terminated poly(ethylene oxide) methyl ether (PEO) and poly(ethylene imine) (PEI). The brush‐like copolymers were characterized by means of Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. It is found that the crystallinity of the PEO side chains in the copolymers remained unaffected by the PEI backbone whereas the crystal structure of PEO side chains was altered to some extent by the PEI backbone. The crystallization behavior of PEO blocks in the copolymers suggests that the bush‐shaped copolymers are microphase‐separated in the molten state. The PEO side chains of the copolymers were selectively complexed with α‐cyclodextrin (α‐CD) to afford hydrophobic side chains (i.e., PEO/α‐CD inclusion complexes). The X‐ray diffraction (XRD) shows that the inclusion complexes (ICs) of the PEO side chains displayed a channel‐type crystalline structure. It is identified that the stoichiometry of the inclusion complexation of the PEI‐g‐PEO with α‐CD is close to that of the control PEO with α‐CD. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2296–2306, 2008  相似文献   

17.
Diblock copolymers consisting of methoxy poly(ethylene glycol) (MPEG) and poly(?‐caprolactone) (PCL), poly(δ‐valerolactone) (PVL), poly(L ‐lactic acid) (PLLA), or poly(lactic‐co‐glycolic acid) (PLGA) as biodegradable polyesters were prepared to examine the phase transition of diblock copolymer solutions. MPEG–PCL and MPEG–PVL diblock copolymers and MPEG–PLLA and MPEG–PLGA diblock copolymers were synthesized by the ring‐opening polymerization of ?‐caprolactone or δ‐valerolactone in the presence of HCl · Et2O as a monomer activator at room temperature and by the ring‐opening polymerization of L ‐lactide or a mixture of L ‐lactide and glycolide in the presence of stannous octoate at 130 °C, respectively. The synthesized diblock copolymers were characterized with 1H NMR, IR, and gel permeation chromatography. The phase transitions for diblock copolymer aqueous solutions of various concentrations were explored according to the temperature variation. The diblock copolymer solutions exhibited the phase transition from gel to sol with increasing temperature. As the polyester block length of the diblock copolymers increased, the gel‐to‐sol transition moved to a lower concentration region. The gel‐to‐sol transition showed a dependence on the length of the polyester block segment. According to X‐ray diffraction and differential scanning calorimetry thermal studies, the gel‐to‐sol transition of the diblock copolymer solutions depended on their degrees of crystallinity because water could easily diffuse into amorphous polymers in comparison with polymers with a crystalline structure. The crystallinity markedly depended on both the distinct character and composition of the block segment. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5784–5793, 2004  相似文献   

18.
The interactions between oppositely charged polyelectrolytes were studied in saline aqueous solutions as functions of the temperature and the salt and polymer concentrations. The polyanion was a diblock copolymer composed of a poly(ethylene oxide) block and a poly(sodium methacrylate) block. Two polycations were used, the homopolymer poly(methacryl oxyethyl trimethylammonium chloride) and its poly(ethylene oxide)‐grafted analogue. By dynamic light scattering and turbidity measurements, it was observed that the salt concentration, temperature, and counterion size had a significant effect on the formation of the polymer complexes in aqueous solutions. At a fixed salt concentration and a fixed temperature, it was possible to form completely soluble complexes of an ionic polymer in aqueous solutions between poly(ethylene oxide)‐grafted poly(methacryl oxyethyl trimethylammonium chloride)and the polyanion with a poly(ethylene oxide) block at a 1:1 anion/cation ratio. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1904–1914, 2003  相似文献   

19.
This article discusses an effective route to prepare amphiphilic diblock copolymers containing a poly(ethylene oxide) block and a polyolefin block that includes semicrystalline thermoplastics, such as polyethylene and syndiotactic polystyrene (s‐PS), and elastomers, such as poly(ethylene‐co‐1‐octene) and poly(ethylene‐co‐styrene) random copolymers. The broad choice of polyolefin blocks provides the amphiphilic copolymers with a wide range of thermal properties from high melting temperature ~270 °C to low glass‐transition temperature ~?60 °C. The chemistry involves two reaction steps, including the preparation of a borane group‐terminated polyolefin by the combination of a metallocene catalyst and a borane chain‐transfer agent as well as the interconversion of a borane terminal group to an anionic (? O?K+) terminal group for the subsequent ring‐opening polymerization of ethylene oxide. The overall reaction process resembles a transformation from the metallocene polymerization of α‐olefins to the ring‐opening polymerization of ethylene oxide. The well‐defined reaction mechanisms in both steps provide the diblock copolymer with controlled molecular structure in terms of composition, molecular weight, moderate molecular weight distribution (Mw/Mn < 2.5), and absence of homopolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3416–3425, 2002  相似文献   

20.
AB‐type block copolymers with poly(trimethylene carbonate) [poly(TMC); A] and poly(ethylene oxide) [PEO; B; number‐average molecular weight (Mn) = 5000] blocks [poly(TMC)‐b‐PEO] were synthesized via the ring‐opening polymerization of trimethylene carbonate (TMC) in the presence of monohydroxy PEO with stannous octoate as a catalyst. Mn of the resulting copolymers increased with increasing TMC content in the feed at a constant molar ratio of the monomer to the catalyst (monomer/catalyst = 125). The thermal properties of the AB diblock copolymers were investigated with differential scanning calorimetry. The melting temperature of the PEO blocks was lower than that of the homopolymer, and the crystallinity of the PEO block decreased as the length of the poly(TMC) blocks increased. The glass‐transition temperature of the poly(TMC) blocks was dependent on the diblock copolymer composition upon first heating. The static contact angle decreased sharply with increasing PEO content in the diblock copolymers. Compared with poly(TMC), poly(TMC)‐b‐PEO had a higher Young's modulus and lower elongation at break. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4819–4827, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号