首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new process was developed to fabricate electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization of ϵ‐caprolactam in the presence of expanded graphite. The transition from an electrical insulator to an electrical semiconductor for nylon 6 occurred when the graphite volume content was 0.75, which was much lower than that of conventional conducting polymer composites. The electrical conductivity reached 10−4 S/cm when the graphite content was 2.0 vol %. The TEM microphotographs suggested that the low percolation threshold and the great improvement of electrical conductivity could be attributed to the high aspect ratio (width‐to‐thickness), the high expansion ratio in c axis of the graphite sheets and the homogeneous dispersion of the nanoscale graphite particles in the nylon 6 matrix. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1626–1633, 2000  相似文献   

2.
The nonlinear conduction behavior of composite materials of foliated graphite nanosheets and nylon-6 subjected to a variable direct-current electric field has been studied. Corresponding to the onset of the nonlinearity, there is a crossover current density/electric field (or current–voltage) couple. The current density or current decreases as the foliated graphite concentration decreases. Through discussions of the nonlinearities within the frameworks of the two theoretical models, the nonlinear random resistor network and the dynamic random resistor network, it is shown that neither of these models can explain fully the results obtained for this system. On the basis of the microscopic structures and conduction processes of the nanocomposites, it is found that a combination of the models can generally account for the nonlinear characteristics. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 155–167, 2004  相似文献   

3.
A new method for the synthesis of exfoliated graphite and polyaniline (PANI)/graphite nanocomposites was developed. Exfoliated graphite nanosheets were prepared through the microwave irradiation and sonication of synthesized expandable graphite. The nanocomposites were fabricated via the in situ polymerization of the monomer at the presence of graphite nanosheets. The as-synthesized graphite nanosheets and PANI/graphite nanocomposite materials were characterized with Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis (TGA). The conductivity of the PANI/graphite nanocomposites was dramatically increased over that of pure PANI. TGA indicated that the incorporation of graphite greatly improved the thermal stability of PANI. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1972–1978, 2004  相似文献   

4.
Preparation of the conducting composites of polystyrene/expanded graphite via in situ polymerization and investigation of the conductive mechanism were carried out. They are characterized by high conductivity and a low percolation threshold. The electrical conductivity reached 10?2 S/cm with 3.0 vol % expanded graphite content, whereas the percolation threshold was 1.0 vol %. Optical micrographs revealed the heterogeneous distribution of the graphite particles and the formation of a conductive network in the polymer matrix. A model of primary particle was proposed to interpret the conductive phenomena. The primary particle is the basic conductive unit in the composites that comprises three of the following parts: the graphite particle, the compact‐adsorbed layer, and the wrapping shell. Our model was also used to explain the experimental data in our previous studies on nylon‐6/expanded graphite composites. A low percolation threshold of conducting composites can be also explained according to the model of the primary particle. Furthermore, the theoretical line of conductivity versus primary particle content calculated from the revised Flory's theory fits the experimental data well. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 954–963, 2002  相似文献   

5.
A micro‐FTIR measurement has been conducted to explore the molecular orientation of amorphous phase in the nylon 6/clay nanocomposite at large strain. Our results indicate that the molecular orientation in such a nanocomposite during stretching is lower than that observed for the pure nylon 6 counterpart, which is further evidenced by the true stress‐strain dependence. The relaxation of the molecular network, resulted from the destruction of γ‐crystals in part and mostly from microvoding (demonstrated by volume dilatation and 2D‐SAXS measurements), should be responsible for the suppressed molecular orientation in the nylon 6/clay nanocomposite. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 514–519, 2010  相似文献   

6.
Highly ordered polyester/graphite flake composite has been fabricated via orienting the graphite flakes within a polymer matrix. The randomly dispersed graphite flakes in a polyester prepolymer were induced twice along the electric field direction, followed by the cross‐linking of the prepolymer. Scanning electron microscopy (SEM), X‐ray diffraction (XRD) analysis showed that the graphite flakes in the resulting composites were aligned parallel to each other. This structure anisotropy of the composite appeared to be a significant electrical anisotropic property with five to six orders of magnitude. Analysis showed that field‐induced torque caused by the polarization of graphite flakes undergone at electric field was a main force inducing the orientation of the graphite flakes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Graphite oxide (GO) was prepared and immobilized with dodecyl isobutyric acid trithiocarbonate (DIBTC) reversible addition‐fragmentation chain transfer (RAFT) agent. The hydroxyl groups of GO were attached to the DIBTC RAFT agent through an esterification process. The resultant modified GO was used for the preparation of polystyrene (PS)/graphite nanocomposites in miniemulsion polymerization. The RAFT‐grafted GO (GO‐DIBTC) at various loadings was dispersed in styrene monomer, and the resultant mixtures were sonicated in the presence of a surfactant (sodium dodecylbenzene sulfonate) and a hydrophobe (hexadecane) to form miniemulsions. The stable miniemulsions thus obtained were polymerized using azobisisobutyronitrile as the initiator to yield encapsulated PS‐GO nanocomposites. The molar mass and polydispersity index of PS in the nanocomposites depended on the amount of RAFT‐grafted GO in the system, in accordance with the features of the RAFT polymerization method. The PS‐GO nanocomposites were of exfoliated morphology, as confirmed by X‐ray diffraction and transmission electron microscopy measurements. The thermal stability and mechanical properties of the PS‐GO nanocomposites were better than those of the neat PS polymer. Furthermore, the mechanical properties were dependent on the modified GO content (i.e., the amount of RAFT‐grafted GO). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Magnetoelectric polymer nanocomposite structures are synthesized using conducting polyaniline and nanosized BFO particles through in situ sol–gel polymerization. The effect of nanosized BFO in polyaniline matrix is studied. The SEM, XRD, VSM, FTIR, and UV–Vis studies were made to understand the morphology, crystalline structure, magnetic, and optical properties of PANI/BFO composites with various concentrations of nanofiller. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2418–2422, 2008  相似文献   

9.
Copolymers of nylon 266 and nylon 66 were prepared by interfacial polymerization of N-glycyl hexanediamine and hexanediamine with adipoyl chloride. According to the results of intrinsic viscosity measurements and GPC analysis, the molecular weights of the copolymers were relatively high. The structure of the copolymers was confirmed by FTIR, and the compositions were determined by 1H-NMR spectroscopy. The copolymers have similar solubility features as nylon 66. Both melting and glass transition temperatures showed a minimum at around 20–30% nylon 66 content. The copolymers are semicrystalline. Copolymers with lower Tm could be melt-spun into fibers without appreciable thermal degradation. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Hydrogen bonding in polyamide 66/clay nanocomposite (PA66CN) was first investigated with temperature Fourier transform infrared (FTIR), the results of which were compared with that of pristine polyamide 66 (PA66) with the same thermal history. FTIR spectra at room temperature revealed that there is essentially 100% hydrogen bonding in both PA66CN and PA66, and the difference in hydrogen‐bonding status between them is tiny. Additionally, DSC showed that the crystalline degrees and melting temperatures of PA66CN and PA66 prepared by melt quenching are similar. However, the changes of hydrogen bonding with temperature in PA66CN and PA66 are different. As the temperature rose, the hydrogen bonding in PA66CN attenuated and dissociated considerably at a smaller rate than PA66. According to transmission electron microscopic morphology of PA66CN, we analyzed the effect of nanodispersion clay layers on the motion of a polymer chain and the thermal expansion of crystalline lamella for interpreting the observed phenomenon. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2313–2321, 2003  相似文献   

11.
Conducting polythiophene (PTh)/single‐wall carbon nanotubes (SWNTs) composites were synthesized by the in situ chemical oxidative polymerization method. The resulting cablelike morphology of the composite (SWNT–PTh) structures was characterized with elemental analysis, X‐ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared, ultraviolet–visible spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, X‐ray diffraction, and transmission electron microscopy. The standard four‐point‐probe method was used to measure the conductivity of the samples. Field emission scanning electron microscopy and transmission electron microscopy analysis revealed that the SWNT–PTh composites were core (SWNTs) and shell (PTh) hybrid structures. Spectroscopic analysis data for the composites were almost identical to those for PTh, supporting the idea that SWNTs served as templates in the formation of a coaxial nanostructure for the composites. The physical properties of the composites were measured and also showed that the SWNTs were modified by conducting PTh with an enhancement of various properties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5283–5290, 2006  相似文献   

12.
Graphite nanosheets (NanoG) were prepared by treating the expanded graphite with sonication in aqueous alcohol solution. Nanocomposites of poly(methyl methacrylate) (PMMA) with NanoG were prepared via an in situ polymerization of MMA in the presence of NanoG with the aid of sonication. The nanocomposites were then dispersed with chloroform (CHCl3) and casted on glass slides to form conducting films. The percolation threshold of PMMA/NanoG conducting films at room temperature was as low as 0.31 vol%, much lower than that of the composites filled with conventional graphite particles. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area diffraction (SAD) and etc. were used to characterize the structure of the graphite nanosheets and the nanocomposites. Results showed that the high-aspect-ratio structure of graphite nanosheets played an important role in forming conducting network in PMMA matrix. The conducting behavior of the composite was interpreted by percolation theory.  相似文献   

13.
A novel method, in situ polymerization, was used for the preparation of nylon 6/silica nanocomposites, and the mechanical properties of the nanocomposites were examined. The results showed that the tensile strength, elongation at break, and impact strength of silica-modified nanocomposites exhibited a tendency of up and down with the silica content increasing, while those of silica-unmodified nanocomposites decreased gradually. It also exhibited that the mechanical properties of silica-modified nanocomposites have maximum values only when 5% silica particles were filled. Based on the relationship between impact strength of the nanocomposites and the matrix ligament thickness τ, a new criterion was proposed to explain the unique mechanical properties of nylon 6/silica nanocomposites. The nylon 6/silica nanocomposites can be toughened only when the matrix ligament thickness is less than τc and greater than τa, where τa is the matrix ligament thickness when silica particles begin to aggregate, and τc is the critical matrix ligament thickness when silica particles begin to toughen the nylon 6 matrix. The matrix ligament thickness, τ, is not independent, which related with the volume fraction of the inorganic component because the diameter of inorganic particles remains constant during processing. According to the observation of Electron Scanning Microscope (SEM), the process of dispersion to aggregation of silica particles in the nylon 6 matrix with increasing of the silica content was observed, and this result strongly supported our proposal. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 789–795, 1998  相似文献   

14.
以表面含有氨基的可反应性纳米SiO2(RNS-A)和表面含有烷基碳链的可分散性纳米SiO2(DNS-3)作为填料,利用原位聚合法制备了尼龙6/SiO2纳米复合材料(相应的复合材料分别简记为RPA和DP3);采用透射电子显微镜观察了复合材料中纳米SiO2的表面形貌,并利用热失重分析仪测定了复合材料的热稳定性,进而考察了纳米SiO2表面功能基团对尼龙6力学性能和热稳定性的影响.结果显示,纳米SiO2能够很好地分散在尼龙6基体中,并使尼龙6的热分解温度提高10℃左右.与此同时,RPA的最大拉伸强度和冲击强度较纯尼龙6的分别提高34.5%和12.5%,DP3的最大拉伸强度和冲击强度分别提高18.2%和45.7%.这表明两种纳米SiO2均可以有效地提高尼龙6的力学性能和热稳定性;可以推测,纳米SiO2的增强效应与其在尼龙6基体材料中的分散和界面作用有关.  相似文献   

15.
The well dispersion of functionalized multi‐walled carbon nanotube (f‐MWCNT) in nylon 6 matrix was prepared by solution mixing techniques. The isothermal and nonisothermal crystallization kinetics of nylon 6 and nylon 6/f‐MWCNT nanocomposites were studied by differential scanning calorimetry (DSC), X‐ray diffraction and polarized optical microscopy analysis. DSC isothermal results revealed that the activation energy of nylon 6 extensively decreased by adding 1 wt % f‐MWCNT into nylon 6, suggesting that the addition of small amount of f‐MWCNT probably induces the heterogeneous nucleation. Nevertheless, the addition of more f‐MWCNT into nylon 6 matrix reduced the transportation ability of polymer chains during crystallization process and thus increased the activation energy. The nonisothermal crystallization of nylon 6/f‐MWCNT nanocomposites was also discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 158–169, 2008  相似文献   

16.
Controllable synthesis of novel sandwiched polyaniline (PANI)/ZnO/PANI free‐standing nanocomposite films is reported via spin coating of ZnO quantum‐dot interlayer on PANI base layer and then PANI surface layer on the ZnO interlayer. The thickness of the ZnO interlayer and the PANI surface layer can be easily controlled by adjusting spin time and spin speed, respectively. The effects of the ZnO interlayer thickness and the PANI surface layer thickness are examined in detail on the photoluminescence (PL) property. It is worth noting that coverage of the PANI surface layer on the ZnO interlayer can not only lead to great enhancement in the PL property but also to a maximum PL intensity at a medium PANI surface layer thickness. This maximum PL property is caused by the combined ZnO/PANI carrier transportation and PANI shielding effects. In addition, the nanocomposite films show reasonably good conductivity. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
The polymorphism behavior in nylon‐11/montmorillonite (MMT) nanocomposite was investigated by wide‐angle X‐ray diffraction (WAXD) and variable‐temperature infrared spectroscopy. The results of WAXD and IR confirmed the presence of the γ‐crystalline form of nylon‐11, which is induced and stabilized by MMT. However, the hydrogen bond in the nanocomposite and its temperature dependence also exhibited some differences from neat nylon‐11. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 253–259, 2004  相似文献   

18.
Because of its special chemical composition, graphite oxide has peculiar influences on electrochemical processes. The existence of various functional groups significantly affects electropolymerization processes and the formation of conductive polymers. Electrochemical synthesis of polyaniline (as a prototype of conductive polymers) on a paste‐based substrate of graphite oxide was investigated. In this case, the electropolymerization is significantly different from conventional cases, and the polymer is generated just during the first potential cycle. This can be attributed to the fact that graphite oxide can assist the monomer oxidation. Alternatively, electropolymerization was successfully performed inside the graphite oxide layers via electrochemical treatment of aniline‐intercalated graphite oxide in the supporting electrolyte. Although these phenomena are related to the chemical composition of graphite oxide, the graphite prepared by the reduction of graphite oxide also displayed some advantages for the electropolymerization (over natural graphite). There is an emphasis on the morphological investigations throughout this study, because novel morphologies were observed in the system under investigation. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2204–2213, 2010  相似文献   

19.
Conductive polymers have found extensive application in fuel cells, sensors and more recently as scaffolds for tissue and organ regeneration. Scaffolds that can transmit electrical impulses have been shown to be beneficial in regeneration of tissues like muscle and nerve that are electroactive in nature. Most cellular events and cell functions are regulated by ion movement, and their imbalance is the cause of several diseases. We report synthesis and characterization of sulfonated polymers of poly(methyl vinyl ether‐alt‐maleic anhydride) (PMVEMA), poly(ether ether ketone) (PEEK), poly(ether sulfone) (PES) and poly(phenylene oxide) (PPO) and evaluate their potential for tissue regeneration. The ionic conductive property stems from the presence of sulfonic groups on the polymer backbone. The structure of the polymer was confirmed using Fourier Transform Infrared Spectroscopy and membrane hydrophicity was determined by water contact angle measurement. The electrical conductivity of these sulfonated membranes was found to be 53.55, 35.39 and 29.51 mS/cm for SPPO, SPEEK and SPMVEMA, respectively. The conductivity was directly proportional to the sulfonic acid content on the polymer backbone. The ionic membranes namely SPPO, SPEEK and SPMVEMA demonstrated superior cell adhesion properties (~7–10 fold higher) than cells seeded onto tissue culture polystyrene. The sulfonated membranes exhibited static water contact angle in the range of 70–76°. The membranes supported the proliferation of human skin fibroblasts over 14 days in culture as evidenced by confocal and electron microscopy imaging. The ionic materials reported in this study may serve as scaffolds for a variety of tissue healing and drug delivery applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Shape memory polymers (SMP) exhibit temperature, frequency and strain rate dependent properties which may be manipulated by various types of external stimuli to achieve desirable response characteristics. In recent years, the emphasis has been on designing SMPs which do not require external stimuli (such as a heat source) and have a rapid response time with large homogenous and reversible deformation characteristics. In this research, the fabrication process and dynamic vibration testing of an electrically activated SMP are presented. It is shown that conductive SMP beams can be fabricated to achieve tunable stiffness and damping with a reasonable thermal gradient generated by electrical triggering. This can allow the tuning of a range of frequency bandwidth and damping properties of SMPs for vibration control applications. The experimentation yielded modal properties (natural frequencies and damping) of the SMP beams. These parameters were validated against values obtained from the estimated performance of these beams based on the complex modulus parameters obtained using dynamic mechanical analysis (DMA). For a modest 20 °C temperature range in an epoxy based SMP, a resulting shift of approximately 7% in the natural frequency and 100% change in the damping ratio of a rectangular beam was successfully attained. These results recommend SMPs as being tunable materials that can enhance vibrational performance and expand the operational envelope of structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号