首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
At first, theoretical aspects of “a2+b4” polycondensations (meaning polycondensations of difunctional and tetrafunctional monomers) are discussed and compared with what is known about “a2+b3” polycondensations. The following review of experimental results is subdivided into three sections. First, syntheses of hyperbranched polyethers and polyesters by polycondensations based on equimolar feed ratios will be reported. Second, kinetically controlled (i.e., irreversible) syntheses of multicyclic polymers using equifunctional feed ratios (i.e., a2/b4 ratios of 2:1) will be described. In the third section, syntheses of multicyclic polymers via thermodynamically controlled (reversible) “a2+b4” polycondensations will be discussed. Characteristic for these polycondensations are again equifunctional feed ratios and metal alkoxides as “a2” or “b4” monomers, which catalyze rapid equilibration reactions. Finally, potential applications of the new polymers will shortly be mentioned. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1971–1987, 2009  相似文献   

2.
A series of hyperbranched polyesters was produced by the condensation of the monomer 3,5‐dihydroxybenzoic acid with 1,3,5‐tris(2‐hydroxyethyl) cyanuric acid as a trifunctional central core. The monomer‐to‐core ratio was varied between 3 and 45. The resulting polymers were phenolic‐terminated polyesters. The degree of branching of the polyesters was calculated according to the method described by Fréchet and was found to be in the range of 0.7–0.8. The number‐average molecular weights calculated via 1H NMR spectroscopic degree‐of‐polymerization values are in reasonable agreement with the predicted values derived from the monomer‐to‐core ratio for all prepared polyesters. Thermal and photophysical properties were also studied. Glass‐transition temperatures were determined by differential scanning calorimetry and were found to be relatively independent of the theoretical molar mass. The polyesters were found to be blue emitters, and the solutions exhibited intense fluorescence, with a maximum of 430 nm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3278–3288, 2005  相似文献   

3.
Meso‐Lactide was polymerized in bulk at 60, 80, and 100 °C by means of three different types of catalysts: dibutyltin sulfides (2,2‐dibutyl‐2‐stanna‐1,3‐dithiolane and 2,2′‐dibutyl‐2‐stanna‐1,3‐dithiane), dibutyltin derivatives of substituted catechols (BuCa, CyCa, and BzCa), and dibutyltin derivatives of 2,2′dihydroxybiphenyl (SnBi) and 2,2′‐dihydroxy‐1,1′‐binaphthyl (SnNa). Only the latter two catalysts were active at 60 °C. The architecture of the resulting polylactides depends very much on the structure of the catalyst and on the temperature. At the lowest temperature (60 °C), SnBi and SnNa mainly yielded even‐numbered linear chains, but SnNa also yielded even‐numbered cycles at 100 °C and short reaction times. In contrast, BuCa, CyCa, and BzCa mainly yielded odd‐numbered cycles, although the same catalysts yielded even‐numbered linear chains when benzylalcohol was added. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 749–759  相似文献   

4.
5,5′,6,6′‐Tetrahydroxy‐3,3,3′,3′‐tetramethyl spirobisindane (TTSBI) was polycondensed with 4,4′‐dichlorodiphenyl sulfone (DCDPS) or with 4,4′‐bis(4‐chlorophenyl sulfonyl) biphenyl (BCSBP) in DMSO. Concentration and feed ratio were optimized to avoid gelation and to obtain a maximum yield of multicyclic polyethers free of functional groups. Regardless of these reaction conditions, only low fractions of perfect multicycles were obtained from DCDPS apparently due to steric hindrance of ring closure. Under the same conditions high fractions of perfect multicycles were achieved with the longer and more flexible DCSBP. The reaction products were characterized by MALDI‐TOF mass spectrometry, 1H‐NMR spectroscopy viscosity, and DSC measurements. Relatively low glass transition temperatures (Tgs ≈ 160–175 °C) were found. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3732–3739, 2008  相似文献   

5.
6.
High‐resolution matrix‐assisted laser desorption/ionization (MALDI) time‐of‐flight mass spectrometry (TOF MS) was used for the analysis of the low‐molecular‐weight products from the photo‐oxidation of poly(3‐hexylthiophene) (P3HT) in solution and thin film. Eight new peak series were observed in the low‐mass range of the mass spectra of the products degraded in solution, and the formulas of the eight components were determined from the accurate mass. From SEC/MALDI‐TOF MS, two components were identified as the degraded products, and the other six components were derived from the fragmentation of the degraded products during the MALDI process. A mechanism for the formation of these components was proposed on the basis of the results of MALDI‐TOF MS. For the thin film degradation, a part of products in the solution degradation were observed, which supports that the oxidation of P3HT in solution and thin film proceeded in the same mechanism. This study shows that high‐resolution MALDI‐TOF MS is effective for the analysis of the low‐molecular‐weight products from P3HT photo‐oxidation and expected to be feasible for the degradation analyses of other polymers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The eight‐shaped poly(ethylene oxide) (PEO) is synthesized by a combination of Glaser coupling with ring‐opening polymerization (ROP). Firstly, the star‐shaped (PEO‐OH) 4 is synthesized by ROP of ethylene oxide (EO) using pentaerythritol as an initiator and diphenylmethyl potassium (DPMK) as a deprotonated agent, and then the alkyne group is introduced onto the PEO arm‐end to give (PEO‐Alkyne) 4 in a NaH/tetrahydrofuran (THF) system. The intramolecular cyclization is carried out by a Glaser coupling reaction in a pyridine/CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) system at room temperature in an air atmosphere, and eight‐shaped PEO was formed with high efficiency (almost 100%). The target polymers and intermediates were well characterized by SEC, MALDI‐TOF MS, 1H NMR and FT‐IR in detail.

  相似文献   


8.
Cells continuously produce reactive oxidative species that can modify all cellular components. In proteins, for example, cysteine, methionine, tryptophan (Trp), and tyrosine residues are particularly prone to oxidation. Here, we report two new approaches to distinguish two isomeric oxidation products of Trp residues, i.e. 5‐hydroxytryptophan (5‐HTP) and oxindolylalanine (Oia) residues, in peptides. First, 2‐nitrobenzenesulfenyl chloride, known to derivatize Trp residues in position 2 of the indole ring, was used to label 5‐HTP residues. The mass shift of 152.98 m/z units allowed identifying 5‐HTP‐ besides Trp‐containing peptides by mass spectrometry, whereas Oia residues were not labeled. Second, fragmentation of the Oia‐ and 5‐HTP‐derived immonium ions at m/z 175.08 produced ions characteristic for each residue that allowed their identification even in the presence of y1 ions at m/z 175.12 derived from peptides with C‐terminal arginine residues. The pseudo MS3 spectra acquired on a quadrupole time‐of‐flight hybrid mass spectrometer displayed two signals at m/z 130.05 and m/z 132.05 characteristic for Oia‐containing peptides and a group of six signals (m/z 103.04, 120.04, 130.04, 133.03, 146.04, and 148.04) for 5‐HTP‐cointaining peptides. In both cases, the relative signal intensities appeared to be independent of the sequence providing a specific fingerprint of each oxidative modification. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Some new water‐soluble bis‐porphyrins, constituted of two porphyrin units spaced by means of aliphatic bridges of different lengths, were synthesized and characterized by MALDI‐TOF mass spectrometry, 1H NMR and UV‐vis spectroscopy. The hydrosolubility of these uncharged compounds was guaranteed from the presence of six long PEG chains bound on the peripheral positions of the two porphyrins. Cobalt and zinc derivatives were also prepared. In the case of Co‐bis‐porphyrin, the appearance of induced circular dichroism (ICD) signals in water solution confirmed the formation of stable complexes with some amino acids, in which the bis‐porphyrin behaves like molecular tweezers.

  相似文献   


10.
1,3‐Dipolar cycloaddition of an organic azide and an acetylenic unit, often referred to as the “click reaction”, has become an important ligation tool both in the context of materials chemistry and biology. Thus, development of simple approaches to directly generate polymers that bear either an azide or an alkyne unit has gained considerable importance. We describe here a straightforward approach to directly prepare linear and hyperbranched polyesters that carry terminal propargyl groups. To achieve the former, we designed an AB‐type monomer that carries a hydroxyl group and a propargyl ester, which upon self‐condensation under standard transesterification conditions yielded a polyester that carries a single propargyl group at one of its chain‐ends. Similarly, an AB2 type monomer that carries one hydroxyl group and two propargyl ester groups, when polymerized under the same conditions yielded a hyperbranched polymer with numerous “clickable” propargyl groups at its molecular periphery. These propargyl groups can be readily clicked with different organic azides, such as benzyl azide, ω‐azido heptaethyleneglycol monomethylether or 9‐azidomethyl anthracene. When an anthracene chromophore is clicked, the molecular weight of the linear polyester could be readily estimated using both UV–visible and fluorescence spectroscopic measurements. Furthermore, the reactive propargyl end group could also provide an opportunity to prepare block copolymers in the case of linear polyesters and to generate nanodimensional scaffolds to anchor a variety of functional units, in the case of the hyperbranched polymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3200–3208, 2010  相似文献   

11.
Biotinylated gradient glycopolymers have been synthesized via RAFT copolymerization of an acrylamide derivative of galactose with N‐acryloylmorpholine in the presence of a biotin CTA. The polymerization was controlled with a linear increase in molecular weights up to 80% conversion. Copolymer chains have a gradient microstructure with an increasing proportion of galactose units towards the ω chain end. The presence of the biotin ligand at the α end of the chains was confirmed by 1H NMR and MALDI‐ToF MS. This strategy based on the use of a biotin‐CTA instead of a post‐polymerization labelling of the chains resulted in a high percentage of α‐functionalized chains (92–95%). Such α‐end‐functionalized glycopolymer chains may interact with streptavidin‐modified surfaces.

  相似文献   


12.
Novel polyesters from 2,5‐furandicarboxylic acid or 2,5‐dimethyl‐furandicarboxylate and 2,3‐butanediol have been synthesized via bulk polycondensation catalyzed by titanium (IV) n‐butoxide, tin (IV) ethylhexanoate, or zirconium (IV) butoxide. The polymers were analyzed by size exclusion chromatography, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy (FTIR), matrix‐assisted laser ionization‐desorption time‐of‐flight mass spectrometry, electrospray ionization time‐of‐flight mass spectrometry, electrospray ionization quadruple time‐of‐flight mass spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. Fully bio‐based polyesters with number average molecular weights ranging from 2 to 7 kg/mol were obtained which can be suitable for coating applications. The analysis of their thermal properties proved that these polyesters are thermally stable up to 270–300 °C, whereas their glass transition temperature (Tg) values were found between 70 and 110 °C. Furthermore, a material was prepared with a molecular weight of 13 kg/mol, with a Tg of 113 °C. This high Tg would make this material possibly suitable for hot‐fill applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) is an excellent analytical technique for rapid analysis of a variety of molecules with straightforward sample pretreatment. The performance of MALDI‐TOF MS is largely dependent on matrix type, and the development of novel MALDI matrices has aroused wide interest. Herein, we devoted to seek more robust MALDI matrix for herbal saponins than previous reported, and ginsenoside Rb1, Re, and notoginsenoside R1 were used as model saponins. At the beginning of the present study, 2,5‐dihydroxybenzoic acid (DHB) was found to provide the highest intensity for saponins in four conventional MALDI matrices, yet the heterogeneous cocrystallization of DHB with analytes made signal acquisition somewhat “hit and miss.” Then, graphene oxide (GO) was proposed as an auxiliary matrix to improve the uniformity of DHB crystallization due to its monolayer structure and good dispersion, which could result in much better shot‐to‐shot and spot‐to‐spot reproducibility of saponin analysis. The satisfactory precision further demonstrated that minute quantities of GO (0.1 μg/spot) could greatly reduce the risk of instrument contamination caused by GO detachment from the MALDI target plate under vacuum. More importantly, the sensitivity and linearity of the standard curve for saponins were improved markedly by DHB‐GO composite matrix. Finally, the application of detecting the Rb1 in complex biological sample was exploited in rat plasma and proved it applicable for pharmacokinetic study quickly. This work not only opens a new field for applications of DHB‐GO in herbal saponin analysis but also offers new ideas for the development of composite matrices to improve MALDI MS performance.  相似文献   

14.
Poly(pyridine ether)s were prepared in two ways: the polycondensation of silylated 1,1,1‐tris(4‐hydroxyphenyl)ethane (THPE) with 2,6‐difluoropyridine (method A) and the polycondensation of free THPE with 2,6‐dichloropyridine (method B). With method A, the THPE/difluoropyridine feed ratio was varied from 1.0:1.0 to 1.0:1.6. Cycles, bicycles, and multicycles were the main reaction products, and crosslinking was never observed. When ideal stoichiometry was used exclusively, multicycles free of functional groups were obtained. These multicycles were detectable in matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectra up to B38C76 with a mass of approximately 32,000 Da. With method B, the reaction conditions were varied at a fixed feed ratio to achieve an optimum for the preparation of multicyclic polyethers, but because of the lower reactivity of 2,6‐dichloropyridine, a quantitative conversion was not achieved. The reaction products were characterized with MALDI‐TOF mass spectrometry, viscosity measurements, and size exclusion chromatography. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5725–5735, 2004  相似文献   

15.
Improved resolution for a miniaturized instrument is demonstrated at high masses using a pulsed extraction, 3(") linear time-of-flight (TOF) mass analyzer. This illustrates the utility of a small and simple mass spectrometer for biological/medical analyses. Current and future applications suggested by this instrument include rapid mass spectral reading of oligonucleotides that differ in one base (single nucleotide polymorphisms), distinction of biomarker signatures from different species of bacterial spores (biological weapons detection) and point-of-care instruments for proteomics-based diagnostics. We have incorporated a two-stage, pulsed-extraction design that places the focal plane of the ions at the detector channel plate surface. The ions are accelerated to a total energy of 12 keV to enable detection of high-mass proteins in a design that incorporates a floatable flight tube set at the voltage of the front channel plate of the detector. The resultant elimination of post-acceleration at the detector is intended to improve mass resolution by reducing the difference in arrival times between ions and their neutral products. Resolutions of one part in 1200 at m/z 4500 and one part in 600 at m/z 12 000 have been achieved. Proteins with molecular masses up to 66 000 Da, mixtures of oligonucleotides, and biological spores have all been successfully measured, results that increase the potential use of this TOF analyzer.  相似文献   

16.
Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) was chosen for an in‐detail analysis of poly(methyl methacrylate) (PMMA) in order to determine the possible fragmentation mechanism with the help of collision‐induced dissociation (CID). All experiments were performed on a well‐defined PMMA standard and were optimized for sample preparation and measurement conditions of both MS and MS/MS. In order to investigate the fragmentation pathways, two parent peaks—both charged with sodium (m/z = 1 625.9 and 2 226.2 Da, respectively)—were selected, thus permitting the examination of possible cleavages, and reaction pathways. For both chosen peaks, the MALDI‐TOF MS/MS spectra revealed four fragmentation series that could be explained by single or multiple main chain scissions and secondary reactions of the PMMA side groups. According to the molar mass of the fragments, a loss or migration of the side group to the end of the free radical, followed by a β‐scission, was favored. These insights are the first steps toward the construction of a library with fragments and fragmentation pathways, complementary to proteomics libraries, in order to obtain fast and automated identification of substances.

  相似文献   


17.
The reversible addition‐fragmentation chain transfer (RAFT) polymerization of N‐acryloylmorpholine (NAM) is performed using three dithioesters (DT) as chain transfer agents (CTA) that incorporate a morpholine (morpholine‐DT), a biotin (biotin‐DT), or a sugar (sugar‐DT) moiety in the R group. PolyNAM chains of controlled characteristics are synthesized. An unexpected behavior is observed with morpholine‐DT, described as an ‘additional retardation’, which is especially visible when low molar masses are targeted ( < 5 000 g · mol−1). In that particular case, further investigations using MALDI‐TOF mass spectrometry show the presence of terminated intermediate radicals (IRs), which corroborates the assumption based on a specific protection of IR according to the nature of the α‐chain‐end.

  相似文献   


18.
The copper (I)‐catalyzed azide‐alkyne cycloaddition “click” reaction was successfully applied to prepare well‐defined 3, 6, and 12‐arms polystyrene and polyethylene glycol stars. This study focused particularly on making “perfect” star polymers with an exact number of arms, as well as developing techniques for their purification. Various methods of characterization confirmed the star polymers high purity, and the structural uniformity of the generated star polymers. In particular, matrix‐assisted laser desorption ionization‐time‐of‐flight mass spectrometry revealed the quantitative transformation of the end groups on the linear polymer precursors and confirmed their quantitative coupling to the dendritic cores to yield star polymers with an exact number of arms. In addition to preparing well‐defined polystyrene and poly(ethylene glycol)homopolymer stars, this technique was also successfully applied to amphiphilic, PCL‐b‐PEG star polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
肿瘤的生长依赖于血管的生成,新生血管不仅为肿瘤生长提供必需的营养物质,而且为肿瘤细胞扩散提供了重要的途径。1997年哈佛大学的O'Reilly等发现了一种内源性新血管生成抑制因子内皮抑素(Endoscatin),显示出特异抑制激活的血管内皮细胞增殖和肿瘤新血管生成的生物学活性,其抗肿瘤作用具有高效、低毒、无耐药性的优点。目前,内皮抑素的研究引起了国内外广泛的兴趣,在美国已进行以安全性为目的的I期临床实验,国内也有多家公司对内皮抑素进行了抗肿瘤研究并申报一类新药。内皮抑素有望成为医治肿瘤而又没有化疗和放疗的毒副作用的一种新的治疗方法,但是否能作为药物应用于临床,尚需对内皮抑素的结构特点及抑制肿瘤和内皮细胞的作用机制等方面进行许多深入的研究。  相似文献   

20.
Green (reagents and organic solvents saving) analytical chemistry is a new strategy for pharmaceutical analysis. The principles of this idea include primary elimination or at least reduction of the amounts of organic reagents and solvents. In this study, we have provided two simple methods for the analysis of clinical drugs in human plasma. One is the capillary LC (Cap LC) connected to MS–MS, the other is the matrix‐assisted laser desorption ionization (MALDI) connected to TOF MS. Sulfonylurea drugs are usually used in diabetes mellitus patients. Diabetes is a syndrome of disordered metabolism resulting in abnormally high blood sugar levels (hyperglycemia). These microscale methods were successfully applied for the monitoring of drug levels in human plasma using gliclazide (a second‐generation sulfonylurea) as the test platform. The sensitivity of these methods is sufficient for detecting the gliclazide within a therapeutic range. All the analytical procedures (including human plasma, sample preparation, and flow rate of the analytical system) were at microscale level. These two methods would lower the consumption of organic solvents further safeguarding our environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号