首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Silicon saw‐tooth refractive lenses have been in successful use for vertical focusing and collimation of high‐energy X‐rays (50–100 keV) at the 1‐ID undulator beamline of the Advanced Photon Source. In addition to presenting an effectively parabolic thickness profile, as required for aberration‐free refractive optics, these devices allow high transmission and continuous tunability in photon energy and focal length. Furthermore, the use of a single‐crystal material (i.e. Si) minimizes small‐angle scattering background. The focusing performance of such saw‐tooth lenses, used in conjunction with the 1‐ID beamline's bent double‐Laue monochromator, is presented for both short (~1:0.02) and long (~1:0.6) focal‐length geometries, giving line‐foci in the 2 µm–25 µm width range with 81 keV X‐rays. In addition, a compound focusing scheme was tested whereby the radiation intercepted by a distant short‐focal‐length lens is increased by having it receive a collimated beam from a nearer (upstream) lens. The collimation capabilities of Si saw‐tooth lenses are also exploited to deliver enhanced throughput of a subsequently placed small‐angular‐acceptance high‐energy‐resolution post‐monochromator in the 50–80 keV range. The successful use of such lenses in all these configurations establishes an important detail, that the pre‐monochromator, despite being comprised of vertically reflecting bent Laue geometry crystals, can be brilliance‐preserving to a very high degree.  相似文献   

2.
X‐ray beam‐position stability is indispensable in cutting‐edge experiments using synchrotron radiation. Here, for the first time, a beam‐position feedback system is presented that utilizes an easy‐to‐use X‐ray beam‐position monitor incorporating a diamond‐fluorescence screen. The acceptable range of the monitor is above 500 µm and the feedback system maintains the beam position within 3 µm. In addition to being inexpensive, the system has two key advantages: it works without a scale factor for position calibration, and it has no dependence on X‐ray energy, X‐ray intensity, beam size or beam shape.  相似文献   

3.
A cell for the investigation of interfaces under pressure is presented. Given the pressure and temperature specifications of the cell, P≤ 100 bar and 253 K ≤T≤ 323 K, respectively, high‐energy X‐rays are required to penetrate the thick Al2O3 windows. The CH4(gas)/H2O(liquid) interface has been chosen to test the performance of the new device. The measured dynamic range of the high‐energy X‐ray reflectivity data exceeds 10?8, thereby demonstrating the validity of the entire experimental set‐up.  相似文献   

4.
Generally, the energy‐dispersive X‐ray fluorescence spectra are plotted as an equi‐energy interval with the constant energy resolution. On the other hand, the wavelength‐dispersive X‐ray fluorescence spectra are usually measured with an equi‐angle interval supposed the constant angular resolution. When the wavelength axis of wavelength‐dispersive X‐ray fluorescence spectra is converted into energy, the intensity should be also corrected. This intensity correction is important even for a narrow scan range such as Pb Lα and Lβ peaks. The intensity ordering is Lβ > Lα for 2θ plot, but it becomes Lα > Lβ for energy plot. The detailed conversion equations for abscissa and ordinate axes are presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A new ultrahigh‐energy‐resolution and wide‐energy‐range soft X‐ray beamline has been designed and is under construction at the Shanghai Synchrotron Radiation Facility. The beamline has two branches: one dedicated to angle‐resolved photoemission spectroscopy (ARPES) and the other to photoelectron emission microscopy (PEEM). The two branches share the same plane‐grating monochromator, which is equipped with four variable‐line‐spacing gratings and covers the 20–2000 eV energy range. Two elliptically polarized undulators are employed to provide photons with variable polarization, linear in every inclination and circular. The expected energy resolution is approximately 10 meV at 1000 eV with a flux of more than 3 × 1010 photons s?1 at the ARPES sample positions. The refocusing of both branches is based on Kirkpatrick–Baez pairs. The expected spot sizes when using a 10 µm exit slit are 15 µm × 5 µm (horizontal × vertical FWHM) at the ARPES station and 10 µm × 5 µm (horizontal × vertical FWHM) at the PEEM station. The use of plane optical elements upstream of the exit slit, a variable‐line‐spacing grating and a pre‐mirror in the monochromator that allows the influence of the thermal deformation to be eliminated are essential for achieving the ultrahigh‐energy resolution.  相似文献   

6.
An innovative scheme to carry out continuous‐scan X‐ray absorption spectroscopy (XAS) measurements similar to quick‐EXAFS mode at the Energy‐Scanning EXAFS beamline BL‐09 at INDUS‐2 synchrotron source (Indore, India), which is generally operated in step‐by‐step scanning mode, is presented. The continuous XAS mode has been implemented by adopting a continuous‐scan scheme of the double‐crystal monochromator and on‐the‐fly measurement of incident and transmitted intensities. This enabled a high signal‐to‐noise ratio to be maintained and the acquisition time was reduced to a few seconds from tens of minutes or hours. The quality of the spectra (signal‐to‐noise level, resolution and energy calibration) was checked by measuring and analysing XAS spectra of standard metal foils. To demonstrate the energy range covered in a single scan, a continuous‐mode XAS spectrum of copper nickel alloy covering both Cu and Ni K‐edges was recorded. The implementation of continuous‐scan XAS mode at BL‐09 would expand the use of this beamline in in situ time‐resolved XAS studies of various important systems of current technological importance. The feasibility of employing this mode of measurement for time‐resolved probing of reaction kinetics has been demonstrated by in situ XAS measurement on the growth of Ag nanoparticles from a solution phase.  相似文献   

7.
A new monochromator scheme is presented in which an extra‐focus constant‐included‐angle varied‐line‐spacing cylindrical‐grating monochromator (extra‐focus CIA‐VCGM) is conveniently combined with a variable‐included‐angle varied‐line‐spacing plane‐grating monochromator (VIA‐VPGM). This dual‐mode solution delivers high performance in the energy range from vacuum ultraviolet (VUV) to soft X‐ray. The resolving power and the efficiency of this dual‐mode grating monochromator are analyzed in detail based on realistic parameters. Comparisons with the commonly used variable‐included‐angle plane‐grating monochromator and normal‐incidence monochromator (VIA‐PGM/NIM) hybrid monochromator are made.  相似文献   

8.
A Johann‐type spectrometer for the study of high‐energy resolution fluorescence‐detected X‐ray absorption spectroscopy, X‐ray emission spectroscopy and resonant inelastic X‐ray scattering has been developed at BL14W1 X‐ray absorption fine structure spectroscopy beamline of Shanghai Synchrotron Radiation Facility. The spectrometer consists of three crystal analyzers mounted on a vertical motion stage. The instrument is scanned vertically and covers the Bragg angle range of 71.5–88°. The energy resolution of the spectrometer ranges from sub‐eV to a few eV. The spectrometer has a solid angle of about 1.87 × 0?3 of 4π sr, and the overall photons acquired by the detector could be 105 counts per second for the standard sample. The performances of the spectrometer are illustrated by the three experiments that are difficult to perform with the conventional absorption or emission spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A new modular X‐ray‐transparent experimental cell enables tomographic investigations of fluid rock interaction under natural reservoir conditions (confining pressure up to 20 MPa, pore fluid pressure up to 15 MPa, temperature ranging from 296 to 473 K). The portable cell can be used at synchrotron radiation sources that deliver a minimum X‐ray flux density of 109 photons mm?2 s?1 in the energy range 30–100 keV to acquire tomographic datasets in less than 60 s. It has been successfully used in three experiments at the bending‐magnet beamline 2BM at the Advanced Photon Source. The cell can be easily machined and assembled from off‐the‐shelf components at relatively low costs, and its modular design allows it to be adapted to a wide range of experiments and lower‐energy X‐ray sources.  相似文献   

10.
The technical implementation of a multi‐MHz data acquisition scheme for laser–X‐ray pump–probe experiments with pulse limited temporal resolution (100 ps) is presented. Such techniques are very attractive to benefit from the high‐repetition rates of X‐ray pulses delivered from advanced synchrotron radiation sources. Exploiting a synchronized 3.9 MHz laser excitation source, experiments in 60‐bunch mode (7.8 MHz) at beamline P01 of the PETRA III storage ring are performed. Hereby molecular systems in liquid solutions are excited by the pulsed laser source and the total X‐ray fluorescence yield (TFY) from the sample is recorded using silicon avalanche photodiode detectors (APDs). The subsequent digitizer card samples the APD signal traces in 0.5 ns steps with 12‐bit resolution. These traces are then processed to deliver an integrated value for each recorded single X‐ray pulse intensity and sorted into bins according to whether the laser excited the sample or not. For each subgroup the recorded single‐shot values are averaged over ~107 pulses to deliver a mean TFY value with its standard error for each data point, e.g. at a given X‐ray probe energy. The sensitivity reaches down to the shot‐noise limit, and signal‐to‐noise ratios approaching 1000 are achievable in only a few seconds collection time per data point. The dynamic range covers 100 photons pulse?1 and is only technically limited by the utilized APD.  相似文献   

11.
Extensive research and great progress of (K,Na)NbO3 (KNN)‐based lead‐free piezoelectric films have been driven by the current legislation and the requirement for sustainable development of society and environment in the applications of microelectromechanical systems. A comprehensive discussion of the recent achievement in KNN‐based films is presented herein. First, the available synthetic techniques, chemical modification, the ferroelectric and piezoelectric properties of KNN‐based films are reviewed, followed by an introduction of the crystal structures and electrical properties of KNN‐based epitaxial films in comparison with the bulk ceramics. Finally, the applications of KNN‐based films for the sensors, the energy harvesters, and energy storage devices are addressed, and current challenges and prospects for future work are discussed.  相似文献   

12.
A new theoretical approach and computational package, FDMX, for general calculations of X‐ray absorption fine structure (XAFS) over an extended energy range within a full‐potential model is presented. The final‐state photoelectron wavefunction is calculated over an energy‐dependent spatial mesh, allowing for a complete representation of all scattering paths. The electronic potentials and corresponding wavefunctions are subject to constraints based on physicality and self‐consistency, allowing for accurate absorption cross sections in the near‐edge region, while higher‐energy results are enabled by the implementation of effective Debye–Waller damping and new implementations of second‐order lifetime broadening. These include inelastic photoelectron scattering and, for the first time, plasmon excitation coupling. This is the first full‐potential package available that can calculate accurate XAFS spectra across a complete energy range within a single framework and without fitted parameters. Example spectra are provided for elemental Sn, rutile TiO2 and the FeO6 octahedron.  相似文献   

13.
Dead‐time effects in X‐ray spectra taken with a digital pulse processor and a silicon drift detector were investigated when the number of events at the low‐energy end of the spectrum was more than half of the total, at counting rates up to 56 kHz. It was found that dead‐time losses in the spectra are energy dependent and an analytical correction for this effect, which takes into account pulse pile‐up, is proposed. This and the usual models have been applied to experimental measurements, evaluating the dead‐time fraction either from the calculations or using the value given by the detector acquisition system. The energy‐dependent dead‐time model proposed fits accurately the experimental energy spectra in the range of counting rates explored in this work. A selection chart of the simplest mathematical model able to correct the pulse‐height distribution according to counting rate and energy spectrum characteristics is included.  相似文献   

14.
《X射线光谱测定》2004,33(6):462-465
We discuss recent results obtained in the development of Si(Li), Si p–i–n, CdTe p–i–n and CdZnTe x‐ray detectors with Peltier coolers for fabrication of laboratory and portable XRF analyzers. The characteristics of Si(Li) Peltier‐cooled detectors are close to those of detectors cooled with the liquid nitrogen and remain the most preferred type of detectors for the tasks of x‐ray fluorescence analysis. Considerable success was obtained in the improvement of the characteristics of CdTe p–i–n detectors and CdZnTe detectors with a metal–semiconductor–metal structure, effective in the energy range up to 100 keV. The spectra of all detectors are presented. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper results are presented from fluorescence‐yield X‐ray absorption fine‐structure spectroscopy measurements with a new seven‐cell silicon drift detector (SDD) module. The complete module, including an integrated circuit for the detector readout, was developed and realised at DESY utilizing a monolithic seven‐cell SDD. The new detector module is optimized for applications like XAFS which require an energy resolution of ~250–300 eV (FWHM Mn Kα) at high count rates. Measurements during the commissioning phase proved the excellent performance for this type of application.  相似文献   

16.
The layout and the characteristics of the hard X‐ray beamline BL10 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA are described. This beamline is equipped with a Si(111) channel‐cut monochromator and is dedicated to X‐ray studies in the spectral range from ~4 keV to ~16 keV photon energy. There are two different endstations available. While X‐ray absorption studies in different detection modes (transmission, fluorescence, reflectivity) can be performed on a designated table, a six‐axis kappa diffractometer is installed for X‐ray scattering and reflectivity experiments. Different detector set‐ups are integrated into the beamline control software, i.e. gas‐filled ionization chambers, different photodiodes, as well as a Pilatus 2D‐detector are permanently available. The performance of the beamline is illustrated by high‐quality X‐ray absorption spectra from several reference compounds. First applications include temperature‐dependent EXAFS experiments from liquid‐nitrogen temperature in a bath cryostat up to ~660 K by using a dedicated furnace. Besides transmission measurements, fluorescence detection for dilute sample systems as well as surface‐sensitive reflection‐mode experiments are presented.  相似文献   

17.
《X射线光谱测定》2005,34(6):521-524
Several types of handy x‐ray fluorescence spectrometers are presented. The results obtained with a Niton spectrometer are presented as a goal to develop a laboratory‐made spectrometer using an Amptek Cool‐X pyroelectric x‐ray generator. A small and cheap charge‐up x‐ray emitting device and its spectrum are also presented. Handy x‐ray spectrometers are now progressing rapidly and the detection limits are in the range of a few ppm for certain elements. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Inelastic X‐ray scattering instruments in operation at third‐generation synchrotron radiation facilities are based on backreflections from perfect silicon crystals. This concept reaches back to the very beginnings of high‐energy‐resolution X‐ray spectroscopy and has several advantages but also some inherent drawbacks. In this paper an alternate path is investigated using a different concept, the `M4 instrument'. It consists of a combination of two in‐line high‐resolution monochromators, focusing mirrors and collimating mirrors. Design choices and performance estimates in comparison with existing conventional inelastic X‐ray scattering instruments are presented.  相似文献   

19.
The first application of a pnCCD detector for X‐ray scattering experiments using white synchrotron radiation at BESSY II is presented. A Cd arachidate multilayer was investigated in reflection geometry within the energy range 7 keV < E < 35 keV. At fixed angle of incidence the two‐dimensional diffraction pattern containing several multilayer Bragg peaks and respective diffuse‐resonant Bragg sheets were observed. Since every pixel of the detector is able to determine the energy of every incoming photon with a resolution ΔE/E? 10?2, a three‐dimensional dataset is finally obtained. In order to achieve this energy resolution the detector was operated in the so‐called single‐photon‐counting mode. A full dataset was evaluated taking into account all photons recorded within 105 detector frames at a readout rate of 200 Hz. By representing the data in reciprocal‐space coordinates, it becomes obvious that this experiment with the pnCCD detector provides the same information as that obtained by combining a large number of monochromatic scattering experiments using conventional area detectors.  相似文献   

20.
At the National Synchrotron Radiation Research Center (NSRRC), which operates a 1.5 GeV storage ring, a dedicated small‐angle X‐ray scattering (SAXS) beamline has been installed with an in‐achromat superconducting wiggler insertion device of peak magnetic field 3.1 T. The vertical beam divergence from the X‐ray source is reduced significantly by a collimating mirror. Subsequently the beam is selectively monochromated by a double Si(111) crystal monochromator with high energy resolution (ΔE/E? 2 × 10?4) in the energy range 5–23 keV, or by a double Mo/B4C multilayer monochromator for 10–30 times higher flux (~1011 photons s?1) in the 6–15 keV range. These two monochromators are incorporated into one rotating cradle for fast exchange. The monochromated beam is focused by a toroidal mirror with 1:1 focusing for a small beam divergence and a beam size of ~0.9 mm × 0.3 mm (horizontal × vertical) at the focus point located 26.5 m from the radiation source. A plane mirror installed after the toroidal mirror is selectively used to deflect the beam downwards for grazing‐incidence SAXS (GISAXS) from liquid surfaces. Two online beam‐position monitors separated by 8 m provide an efficient feedback control for an overall beam‐position stability in the 10 µm range. The beam features measured, including the flux density, energy resolution, size and divergence, are consistent with those calculated using the ray‐tracing program SHADOW. With the deflectable beam of relatively high energy resolution and high flux, the new beamline meets the requirements for a wide range of SAXS applications, including anomalous SAXS for multiphase nanoparticles (e.g. semiconductor core‐shell quantum dots) and GISAXS from liquid surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号