首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Even though the blood–brain barrier (BBB) is compromised for angiogenesis, therapeutic agents for glioblastoma multiforme (GBM) are particularly inefficient due to the existence of a blood–tumor barrier (BTB), which hampers tumor accumulation and uptake. Integrin αvβ3 is overexpressed on glioblastoma U87 cells and neovasculture, thus making its ligands such as the RGD motif target glioblastoma in vitro and in vivo. In the present work, we have designed a modified polyethylene glycol–polyethylenimine (PEG–PEI) gene carrier by conjugating it with a cyclic RGD sequence, c(RGDyK) (cyclic arginine‐glycine‐aspartic acid‐D ‐tyrosine‐lysine). When complexed with plasmid DNA, this gene carrier, termed RGD–PEG–PEI, formed homogenous nanoparticles with a mean diameter of 73 nm. These nanoparticles had a high binding affinity with U87 cells and facilitated targeted gene delivery against intracranial glioblastoma in vivo, thereby leading to a higher gene transfer efficiency compared to the PEG–PEI gene carrier without RGD decoration. This intracranial glioblastoma‐targeted gene carrier also enhanced the therapeutic efficacy of pORF‐hTRAIL, as evidenced by a significantly prolonged survival of intracranial glioblastoma‐bearing nude mice. Considering the contribution of glioblastoma neovasculature to the BBB under angiogenic conditions, our results demonstrated the therapeutic feasibility of treating a brain tumor through mediation of integrin αvβ3, as well as the potential of using RGD–PEG–PEI as a targeted gene carrier in the treatment of intracranial glioblastoma.  相似文献   

2.
Thermoreversible polymeric biomaterials are finding increased acceptance in tissue engineering applications. One drawback of the polymers is their synthetic nature, which does not allow direct interaction of mammalian cells with the polymers. This limitation may be alleviated by grafting arginine–glycine–aspartic acid (RGD) containing peptides onto the polymer backbone to facilitate interactions with cell‐surface integrins. Toward this goal, N‐isopropylacrylamide (NiPAM)‐based thermoreversible polymers containing amine‐reactive N‐acryloxysuccinimide (NASI) groups were synthesized. Conjugation of RGD‐containing peptides to polymers was demonstrated with 1H NMR spectroscopy and reverse‐phase high‐pressure liquid chromatography. The conjugation reaction was optimal at 4 °C and pH of 8.0, and increased with the increasing NASI content of polymers. With a peptide grafting ratio of 0.25 mol %, there was no significant change in the lower critical solution temperature of the polymers. Finally, the NASI‐containing polymers, cast as films, on tissue culture polystyrene, were shown to conjugate to RGD‐containing peptides and support C2C12 cell attachment. We conclude that NASI‐containing thermoreversible polymers are amenable for grafting biomimetic peptides to impart cell adhesiveness to the polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3989–4000, 2003  相似文献   

3.
In this report, we have synthesized organic/inorganic hybrid peptide–poly(?‐caprolactone) (PCL) conjugates via ring opening polymerization (ROP) of ?‐caprolactone (CL) in the presence of two sequence defined peptide initiators, namely POSS‐Leu‐Aib‐Leu‐NH2 (POSS: polyhedral oligomeric silsesquioxane; Leu: Leucine; Aib: α‐aminoisobutyric acid) and OMe‐Leu‐Aib‐Leu‐NH2. Covalent attachment of peptide segments with the PCLs were examined by 1H and 29Si NMR spectroscopy, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) and FTIR spectroscopy. Supramolecular inclusion complexations of synthesized peptide‐PCL conjugates with α‐cyclodextrin (α‐CyD) were studied to understand the effect of POSS/OMe‐peptide moieties at the PCL chain ends. Inclusion complexation of peptide‐PCL conjugates with α‐CyD produced linear polypseudorotaxane, confirmed by 1H NMR, FTIR, powder X‐ray diffraction (PXRD), polarized optical microscopy (POM) and differential scanning calorimetry (DSC). Extent of α‐CyD threading onto the hybrid peptide‐PCL conjugated polymers is less than that of α‐CyD threaded onto the linear PCL. Thus, PCL chains were not fully covered by the host α‐CyD molecules due to the bulky POSS/OMe‐peptide moieties connected with the one edge of the PCL chains. PXRD experiment reveals channel like structures by the synthesized inclusion complexes (ICs). Spherulitic morphologies of POSS/OMe‐peptide‐PCL conjugates were fully destroyed after inclusion complexation with α‐CyD and tiny nanoobjects were produced. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3643–3651.  相似文献   

4.
Peptide–polymer conjugates are versatile class of biomaterials composed of a peptide block covalently linked with a synthetic polymer block. This report demonstrates the synthesis of peptide‐poly(tert‐butyl methacrylate) (Peptide‐PtBMA) conjugates of varying molecular weights via a “grafting from” atom transfer radical polymerization (ATRP) technique using as‐synthesized peptide‐based initiator in toluene. Peptide‐PtBMA conjugate is soluble in many organic solvents and undergoes self‐assembly into micro/nanospheres in DMF/THF as observed from both FESEM and DLS results. The conjugate micro/nanospheres are nothing but the composite micelles formed by the secondary aggregation of primary micelles generated initially in these organic solvents. The hydrolysis of tert‐butyl groups of Peptide‐PtBMA conjugate leads to the formation of peptide‐poly(methacrylic acid) (Peptide‐PMA) conjugate. The circular dichroism (CD) analysis exhibits the presence of β‐sheet conformation of peptide moiety in synthesized conjugates. The formed Peptide‐PMA conjugate is soluble in water and owing to its amphiphilic character, the conjugate molecules self‐assemble into spherical micelles as well as worm‐like micelles upon increasing the concentration of conjugate in water. However, the sodium salt of Peptide‐PMA conjugates (Peptide‐PMAS) self‐assembles into only spherical swollen micelles in water at higher (pH ~10). The critical aggregation concentrations (CACs) of both Peptide‐PMA and Peptide‐PMAS micelles are measured by fluorescence spectroscopy. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3019–3031  相似文献   

5.
We prepared blends of poly(butylene‐2,6‐naphthalate) (PBN) and poly(ether imide) (PEI) by solution‐casting from dichloroacetic acid solutions. The miscibility, crystallization, and melting behavior of the blends were investigated with differential scanning calorimetry (DSC) and dynamic mechanical analysis. PBN was miscible with PEI over the entire range of compositions, as shown by the existence of single composition‐dependent glass‐transition temperatures. In addition, a negative polymer–polymer interaction parameter was calculated, with the Nishi–Wang equation, based on the melting depression of PBN. In nonisothermal crystallization investigations, the depression of the crystallization temperature of PBN depended on the composition of the blend and the cooling rate; the presence of PEI reduced the number of PBN segments migrating to the crystallite/melt interface. Melting, recrystallization, and remelting processes occurring during the DSC heating scan caused the occurrence of multiple melting endotherms for PBN. We explored the effects of various experimental conditions on the melting behavior of PBN/PEI blends. The extent of recrystallization of the PBN component during DSC heating scans decreased as the PEI content, the heating rate, the crystallization temperature, and the crystallization time increased. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1694–1704, 2004  相似文献   

6.
A systematic comparison between the grafting‐to (convergent) and grafting‐from (divergent) synthetic routes leading to cyclic peptide–polymer conjugates is described. The reversible addition–fragmentation chain transfer (RAFT) process was used to control the polymerizations and the couplings between cyclic peptide and polymer or RAFT agent were performed using N‐hydroxysuccinimide (NHS) active ester ligation. The kinetics of polymerization and polymer conjugation to cyclic peptides were studied for both grafting‐to and grafting‐from synthetic routes, using N‐acryloyl morpholine as a model monomer. The cyclic peptide chain transfer agent was able to mediate polymerization as efficiently as a traditional RAFT agent, reaching high conversion in the same time scale while maintaining excellent control over the molecular weight distribution. The conjugation of polymers to cyclic peptides proceeded to high conversion, and the nature of the carbon at the α‐position to the NHS group was found to play a crucial role in the reaction kinetics. The study was extended to a wider range of monomers, including hydrophilic and temperature responsive acrylamides, hydrophilic and hydrophobic acrylates, and hydrophobic and pH responsive methacrylates. Both approaches lead to similar peptide–polymer conjugates in most cases, while some exceptions highlight the advantages of one or the other method, thereby demonstrating their complementarity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1003–1011  相似文献   

7.
Surface‐confined atom transfer radical polymerization was used to prepare gold nanoparticle–poly(methyl methacrylate) core–shell particles at elevated temperature. First, gold nanoparticles were prepared by the one‐pot borohydride reduction of tetrachloroaurate in the presence of 11‐mercapto‐1‐undecanol (MUD). MUD‐capped gold nanoparticles were then exchanged with 3‐mercaptopropyltrimethoxysilane (MPS) to prepare a self‐assembled monolayer (SAM) of MPS on the gold nanoparticle surfaces and subsequently hydrolyzed with hydrochloric acid. The extent of exchange of MUD with MPS was determined by NMR. The resulting crosslinked silica‐primer layer stabilized the SAM of MPS and was allowed to react with the initiator [(chloromethyl)phenylethyl] trimethoxysilane. Atom transfer radical polymerization was conducted on the Cl‐terminated gold nanoparticles with the CuCl/2,2′‐bipyridyl catalyst system at elevated temperature. The rates of polymerization with the initiator‐modified gold nanoparticles exhibited first‐order kinetics with respect to the monomer, and the number‐average molecular weight of the cleaved graft polymer increased linearly with the monomer conversion. The presence of the polymer on the gold nanoparticle surface was identified by Fourier transform infrared spectroscopy and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3631–3642, 2005  相似文献   

8.
Polyester‐based scaffolds covalently functionalized with arginine‐glycine‐aspartic acid‐cysteine (RGDC) peptide sequences support the proliferation and osteogenic differentiation of stem cells. The aim is to create an optimized 3D niche to sustain human bone marrow stem cell (hBMSC) viability and osteogenic commitment, without reliance on differentiation media. Scaffolds consisting of poly(lactide‐co‐trimethylene carbonate), poly(LA‐co‐TMC), and functionalized poly(lactide) copolymers with pendant thiol groups are prepared by salt‐leaching technique. The availability of functional groups on scaffold surfaces allows for an easy and straightforward method to covalently attach RGDC peptide motifs without affecting the polymerization degree. The strategy enables the chemical binding of bioactive motifs on the surfaces of 3D scaffolds and avoids conventional methods that require harsh conditions. Gene and protein levels and mineral deposition indicate the osteogenic commitment of hBMSC cultured on the RGDC functionalized surfaces. The osteogenic commitment of hBMSC is enhanced on functionalized surfaces compared with nonfunctionalized surfaces and without supplementing media with osteogenic factors. Poly(LA‐co‐TMC) scaffolds have potential as scaffolds for osteoblast culture and bone grafts. Furthermore, these results contribute to the development of biomimetic materials and allow a deeper comprehension of the importance of RGD peptides on stem cell transition toward osteoblastic lineage.  相似文献   

9.
Stable and aggregation‐free “gold nanoparticle–polymeric micelle” conjugates were prepared using a new and simple protocol enabled by the hydrogen bonding between surface‐capping ligands and polymeric micelles. Individual gold nanoparticles were initially capped using a phosphatidylthio–ethanol lipid and further conjugated with a star poly(styrene‐block‐glutamic acid) copolymer micelle using a one‐pot preparation method. The morphology and stability of these gold–polymer conjugates were characterized using transmission electron microscopy (TEM) and UV–vis spectroscopy. The self‐assembly of this class of polymer‐b‐polypeptide in aqueous an medium to form spherical micelles and further their intermicelle reorganization to form necklace‐like chains was also investigated. TEM and laser light scattering techniques were employed to study the morphology and size of these micelles. Polymeric micelles were formed with diameters in the range of 65–75 nm, and supermicellular patterns were observed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3570–3579, 2007  相似文献   

10.
Nanostructures derived from amphiphilic DNA–polymer conjugates have emerged prominently due to their rich self‐assembly behavior; however, their synthesis is traditionally challenging. Here, we report a novel platform technology towards DNA–polymer nanostructures of various shapes by leveraging polymerization‐induced self‐assembly (PISA) for polymerization from single‐stranded DNA (ssDNA). A “grafting from” protocol for thermal RAFT polymerization from ssDNA under ambient conditions was developed and utilized for the synthesis of functional DNA–polymer conjugates and DNA–diblock conjugates derived from acrylates and acrylamides. Using this method, PISA was applied to manufacture isotropic and anisotropic DNA–polymer nanostructures by varying the chain length of the polymer block. The resulting nanostructures were further functionalized by hybridization with a dye‐labelled complementary ssDNA, thus establishing PISA as a powerful route towards intrinsically functional DNA–polymer nanostructures.  相似文献   

11.
2,6‐Dimethyl‐5‐methylene‐1,3‐dioxa‐4‐one (DMDO), a cyclic acrylate possessing acetal–ester linkage, was obtained as a mixture of cis‐ and trans‐isomers (95:5) from Baylis–Hillman reaction of an aryl acrylate. The radical and anionic polymerizations of DMDO yielded the corresponding vinyl polymers without any side reactions such as cleavage of the acetal–ester linkage. The polymerization behaviors were significantly different from that of the acyclic acrylate, α‐(hydroxymethyl)acrylic acid, which was expected inactive against polymerization due to the steric hindrance around the vinylidene group by the α‐substituent. The acetal–ester linkage of the obtained polymer ( P1 ) was completely cleaved via acid hydrolysis to afford a water soluble polymer, P2 . © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 955–961  相似文献   

12.
A synthetic protocol for the preparation of hetero‐biofunctional protein–polymer conjugates is described. A chain transfer agent, S,S‐bis (α,α′‐dimethyl‐α″‐acetic acid) trithiocarbonate was functionalized with α,ω‐pyridyl disulfide (PDS) groups, Subsequently, one of the PDS groups was covalently attached to bovine serum albumin (BSA) at the specific free thiol group on the cysteine residue through a disulfide linkage. The second PDS group remained intact, as it was found to be inaccessible to further BSA functionalization. The BSA‐macro‐reversible addition‐fragmentation chain transfer (RAFT) agent was then used to prepare BSA‐polymer conjugates via in situ polymerization of oligo (ethyleneglycol) acrylate and N‐(2‐hydroxypropyl) methacrylamide using an ambient temperature initiator, 4,4′‐azobis [2,9‐imidazolin‐2‐ethyl)propane] dihydrochloride in an aqueous medium. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS‐PAGE) confirmed that the in situ polymerization occurred at the protein surface where the RAFT agent was attached and the molecular weights of the BSA–polymer conjugates were found to increase concomitantly with monomer conversion and polymerization time. After polymerization the remaining terminal PDS groups were then utilized to attach thiocholesterol and a flurophore, rhodamine B to the protein–polymer conjugates via disulfide coupling. UV–Vis and fluorescence analyses revealed that ~80% of the protein conjugates were found to retain integral PDS end groups for further attachment to free thiol‐tethered precursors. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1399–1405, 2010  相似文献   

13.
The synthesis of new ω‐phosphonic acid‐terminated poly(ethylene oxide) (PEOs) monomethyl ethers was investigated by the combination of Atherton–Todd or Kabachnik–Fields reactions and the “click” copper‐catalyzed 1,3‐dipolar cycloaddition of azides and terminal alkynes. The Atherton–Todd route fails to give the corresponding phosphonic acid‐terminated PEOs due to competitive cleavage of the P? N bond during the dealkylation step. In contrast, the Kabachnik–Fields route leads with very good yields to ω‐phosphonic acid‐PEO through “click” reaction of azido‐PEO onto dimethyl aminopropargyl phosphonate prepared by Kabachnik–Fields reaction between propargylbenzylimine and dimethyl phosphonate, followed by acidic hydrolysis. The reported methodology, precluding the use of anionic polymerization of ethylene oxide, leads to novel well‐defined phosphonic acid‐terminated PEOs from commercially available products in good yields. Moreover, such a strategy can be adapted to anchor phosphonic acid functionality onto a wide range of polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
Synthesis of cysteine‐terminated linear polystyrene (PS)‐b‐poly(ε‐caprolactone) (PCL)‐b‐poly(methyl methacrylate) (PMMA)/or poly(tert‐butyl acrylate)(PtBA)‐b‐poly(ethylene glycol) (PEG) copolymers was carried out using sequential quadruple click reactions including thiol‐ene, copper‐catalyzed azide–alkyne cycloaddition (CuAAC), Diels–Alder, and nitroxide radical coupling (NRC) reactions. N‐acetyl‐L ‐cysteine methyl ester was first clicked with α‐allyl‐ω‐azide‐terminated PS via thiol‐ene reaction to create α‐cysteine‐ω‐azide‐terminated PS. Subsequent CuAAC reaction with PCL, followed by the introduction of the PMMA/or PtBA and PEG blocks via Diels–Alder and NRC, respectively, yielded final cysteine‐terminated multiblock copolymers. By 1H NMR spectroscopy, the DPns of the blocks in the final multiblock copolymers were found to be close to those of the related polymer precursors, indicating that highly efficient click reactions occurred for polymer–polymer coupling. Successful quadruple click reactions were also confirmed by gel permeation chromatography. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
1,4‐Pentadien‐3‐one‐1,5‐bis(p‐hydroxyphenyl) (PBHP) was prepared by reacting p‐hydroxybenzaldehyde and acetone in the presence of an acid catalyst. 1,4‐Pentadiene‐3‐one‐1‐p‐hydroxyphenyl‐5‐p‐phenyl methacrylate (PHPPMA) monomer was prepared by reacting PBHP dissolved in ethyl methyl ketone (EMK) with methacryloyl chloride in the presence of triethylamine. A free‐radical solution polymerization technique was used for synthesizing homo‐ and copolymers of different feed compositions of PHPPMA and ethyl acrylate (EA) in EMK as a solvent with benzoyl peroxide as a free‐radical initiator at 70 ± 1 °C. All the polymers were characterized with IR and 1H NMR techniques. The compositions of the copolymers were determined with the 1H NMR technique. The copolymer reactivity ratios were evolved with Kelen–Tudos (EA = 1.25 and PHPPMA = 0.09) and extended Kelen–Tudos (EA = 1.30 and PHPPMA = 0.09) methods. Q (0.48) and e (1.68) values for the new monomer (PHPPMA) were calculated with the Alfrey–Price method. UV absorption spectra for poly(PHPPMA) showed two absorption bands at 302 and 315 nm. The photocrosslinking properties of the polymer samples were examined with the solvent method. Thermal analyses of the polymers were performed with the thermogravimetric‐differential thermogravimetric technique. First, the decomposition temperatures started for poly(PHPPMA), copoly(EA‐PHPPMA) (62:38), and copoly(EA‐PHPPMA) (41:59) were at 350, 410, and 417 °C, respectively. A gel permeation chromatographic method was used for determining the polymer molecular weights (weight‐average molecular weight: 2.67 × 104 and number‐average molecular weight: 1.41 × 104) and polydispersity index (1.89). The solubility of the monomer and the copolymers occurred at 30 °C with solvents having different polarities. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1632–1640, 2003  相似文献   

16.
Low‐molecular‐weight poly(acrylic acid) (PAA) was synthesized by reversible addition fragmentation chain transfer polymerization with a trithiocarbonate as chain‐transfer agent (CTA). With a combination of NMR spectroscopy and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, the PAA end‐groups of the polymer were analyzed before and after neutralization by sodium hydroxide. The polymer prior to neutralization is made up of the expected trithiocarbonate chain‐ends and of the H‐terminated chains issued from a reaction of transfer to solvent. After neutralization, the trithiocarbonates are transformed into thiols, disulfides, thiolactones, and additional H‐terminated chains. By quantifying the different end‐groups, it was possible to demonstrate that fragmentation is the rate limiting step in the transfer reaction. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5439–5462, 2004  相似文献   

17.
The self‐assembling nature and phase‐transition behavior of a novel class of triarm, star‐shaped polymer–peptide block copolymers synthesized by the combination of atom transfer radical polymerization and living ring‐opening polymerization of α‐amino acid‐N‐carboxyanhydride are demonstrated. The two‐step synthesis strategy adopted here allows incorporating polypeptides into the usual synthetic polymers via an amido–amidate nickelacycle intermediate, which is used as the macroinitiator for the growth of poly(γ‐benzyl‐L ‐glutamate). The characterization data are reported from analyses using gel permeation chromatography and infrared, 1H NMR, and 13C NMR spectroscopy. This synthetic scheme grants a facile way to prepare a wide range of polymer–peptide architectures with perfect microstructure control, preventing the formation of homopolypeptide contaminants. Studies regarding the supramolecular organization and phase‐transition behavior of this class of polymer‐block‐polypeptide copolymers have been accomplished with X‐ray diffraction, infrared spectroscopy, and thermal analyses. The conformational change of the peptide segment in the block copolymer has been investigated with variable‐temperature infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2774–2783, 2006  相似文献   

18.
Poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylenevinylene] (MEH‐PPV) with a molar mass of 26–47 × 104 g mol?1 and a polydispersity of 2.5–3.2 was synthesized by a liquid–solid two‐phase reaction. The liquid phase was tetrahydrofuran (THF) containing 1,4‐bis(chloromethyl)‐2‐methoxy‐5‐(2′‐ethylhexyloxy)benzene as the monomer and a certain amount of tetrabutylammonium bromide as a phase‐transfer catalyst. The solid phase consisted of potassium hydroxide particles with diameters smaller than 0.5 mm. The reaction was carried out at a low temperature of 0 °C and under nitrogen protection. No gelation was observed during the polymerization process, and the polymer was soluble in the usual organic solvents, such as chloroform, toluene, THF, and xylene. A polymer light‐emitting diode was fabricated with MEH‐PPV as an active luminescent layer. The device had an indium tin oxide/poly(3,4‐ethylenedioxylthiophene) (PEDOT)/MEH‐PPV/Ba/Al configuration. It showed a turn‐on voltage of 3.3 V, a luminescence intensity at 6.1 V of 550 cd/m2, a luminescence efficiency of 0.43 cd/A, and a quantum efficiency of 0.57%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3049–3054, 2004  相似文献   

19.
A significant improvement in the electroluminescence (EL) properties was observed for a poly{5‐methoxy‐2‐[(2′‐ethyl‐hexyl)‐oxy]‐p‐phenylenevinylene} (MEH–PPV)/poly(2,3‐diphenyl‐5‐octyl‐p‐phenylenevinylene) (DPO–PPV) blend after a thermal treatment at 200 °C for 2 h in vacuo to furnish the chemical bonding between polymer chains. 1H NMR spectroscopy and two‐photon excitation microscopy revealed that the chemical bonding turned the immiscible polyblend into a system more like a block copolymer with a vertically segregated morphology. Because both the lowest unoccupied molecular orbital and highest occupied molecular orbital levels of MEH–PPV in the wetting layer were higher than those of DPO–PPV in the upper layer, the heterojunction between the two layers of the polymers fit the category of so‐called type II heterojunctions. As a result, the turn‐on voltage of the polymer light‐emitting diode prepared with the thermally treated polyblend decreased to ~0.6 V, and the EL emission intensities and quantum efficiencies increased to about 4 times those of the untreated polyblend. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 62–69, 2006  相似文献   

20.
A simple and facile strategy for the functionalization of commercial poly(ε‐caprolactone) diols (PCLs) with pendant functionalities at the polymer chain termini is described. Well‐defined allyl‐functionalized PCLs with varying numbers of allyl end‐block side‐groups were synthesized by cationic ring‐opening polymerization of allyl glycidyl ether using PCL diols as macroinitiators. Further functionalization of the allyl‐functionalized PCLs was realized via the UV‐initiated radical addition of a furan‐functionalized thiol to the pendant allyl functional groups, showing the suitability for post‐modification of the PCL materials. Changes in polymer structure as a result of varying the number of pendant functional units at the PCL chain termini were demonstrated. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 928–939  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号