首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The total (elastic and inelastic) intensity of electrons scattered by CO2 was measured in the s range of 1 to 12 Å?1 and compared with the theoretical intensity calculated from the Hartree-Fock molecular wave function and those calculated for the independent-atom-model (IAM ) molecule. In the range of s ? 4 Å?1 the electron correlation effect on the total scattered intensity was found to be represented by that for the IAM molecule.  相似文献   

2.
The generalized relativistic effective core potential (GRECP) approach is employed in the framework of multireference single‐ and double‐excitation configuration interaction (MRD‐CI) method to calculate the spin‐orbit splitting in the 2Po ground state of the Tl atom and spectroscopic constants for the 0+ ground state of TlH. The 21‐electron GRECP for Tl is used, and the outer core 5s and 5p pseudospinors are frozen with the help of the level shift technique. The spin‐orbit selection scheme with respect to relativistic multireference states and the corresponding code are developed and applied in the calculations. In this procedure both correlation and spin‐orbit interactions are taken into account. A [4,4,4,3,2] basis set is optimized for the Tl atom and employed in the TlH calculations. Very good agreement is found for the equilibrium distance, vibrational frequency, and dissociation energy of the TlH ground state (Re=1.870 Å, ωe=1420 cm−1, De=2.049 eV) as compared with the experimental data (Re=1.872 Å, ωe=1391 cm−1, De=2.06 eV). © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 409–421, 2001  相似文献   

3.
The synthesis, structure, and magnetic properties of four 2,2′‐dipyridylamine ligand (abbreviated as Hdpa) containing copper(II) complexes. There is one binuclear compound, which is [Cu21,1‐NCO)2(NCO)2(Hdpa)2] ( 1 ), and three mononuclear compounds, which are [Cu{N(CN)2}2(Hdpa)2] ( 2 ), [Cu(CH3CO2)(Hdpa)2·N(CN)2] ( 3 ), and [Cu(NCS)(Acac)] ( 4 ). Compounds 1 and 4 crystallize in the monoclinic system, space group P2(1)/c and Z = 4, with a = 8.2465(6) Å, b = 9.3059(7) Å, c = 16.0817(12) Å, β = 91.090(1)°, and V = 1233.90(16) Å3 for 1 and a = 7.6766(6) Å, b = 21.888(3) Å, c = 10.4678(12) Å, β = 90.301(2)°, and V= 1758.8(4) Å3 for 4 . Compounds 2 and 3 crystallize in the triclinic system, space group P‐1 and Z = 1, with a = 8.1140(3) Å, b = 8.2470(3) Å, c = 9.3120(4) Å, β = 102.2370(10)°, and V = 592.63(4) Å3 for 2 and a = 7.4780(2) Å, b = 12.5700(3) Å, c = 13.0450(3) Å, β = 96.351(2)°, and V = 1211.17(5) Å3 for 3 . Complex ( 1 ), the magnetic data was fitted by the Bleaney‐Bowers equation (1). A very good fit was derived with J = 23.96, Θ = ?1.5 (g = 1.97). Complex ( 1 ) shows the ferromagnetism. Complexes ( 2 ), ( 3 ) and ( 4 ) of have the it is the typical paramagnetic behavior of unpaired electrons. Under a low temperature around 25 K, complexes ( 2 ) and ( 3 ) show weak ferromagnetic behavior. They are the cause of hydrogen bonds.  相似文献   

4.
It is generally assumed that two successive inelastic interactions between an electron and a solid are independent of each other. In other words, the electron has no memory of its previous interaction. However, the previous interaction of the electron generates a potential that should influence its succeeding inelastic interaction. The aim of this work is to establish a model to account for the memory effect of an electron between two successive inelastic interactions. On the basis of the dielectric response theory, formulae for differential inverse inelastic mean free paths (DIIMFPs) and inelastic mean free paths (IMFPs) considering the memory effect were derived for electrons moving parallel to a solid surface by solving the Poisson equation and applying suitable boundary conditions. These mean free paths were then calculated with the extended Drude dielectric function for a Cu surface. It was found that the DIIMFP and the IMFP with the memory effect for electron energy E lay between the corresponding values without the memory effect for electron energy E and previous energy E0. The memory effect increased with increasing electron energy loss, E0 ? E, in the previous inelastic interaction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Electron mean free paths as a function of kinetic energy have been measured by the substrate overlayer technique for in situ-polymerized films of poly(p-xylylene) and the monochloro- and monobromo-substituted derivatives. The results are compared with previous estimates of mean free paths available in the literature for organic materials. Comparison is also drawn with corresponding experimental data for typical metals and semiconductors, and it is shown that organic polymers fit into a consistent picture which may be rationalized on the basis of existing theory. For electrons of kinetic energy ~969 eV, ~1170 eV, 1202 eV, and 1403 eV, mean free paths of ~14 Å, ~22 Å, ~23 Å, and ~29 Å, respectively, are obtained for the poly(p-xylylene) polymer films studied in this work.  相似文献   

7.
The conformational characteristics of a comb‐like side‐chain liquid crystal polysiloxane (SCLCP), dissolved in deuterated chloroform, were evaluated by small‐angle neutron scattering (SANS) measurements over a wide q range. SANS studies were carried out on specimens with constant backbone length (DP = 198) and variable spacer length (n = 3, 5, and 11), and with constant spacer length (n = 5) and variable DP (45, 72, 127, and 198). The form factor P(q) at high q was analyzed using the wormlike chain model with finite cross‐sectional thickness (Rc) and taking into account the molecular weight polydispersity. The analysis generated values of persistence length in the range lp = 28–32 Å, considerably larger than that of the unsubstituted polysiloxane chain (lp = 5.8 Å), with contour lengths per monomer comparable to the fully‐extended polysiloxane backbone (lm = 2.9 Å). This indicates a relatively rigid SCLCP chain due to the influence of the densely attached mesogenic groups. The SCLCP with n = 11 is more flexible (lp = 28 Å) than those with n = 3 and n = 5 (lp = 32 Å). The cross‐sectional thickness increases with spacer length, Rcn0.21±0.02 (3 ≤ n ≤ 11), and the contour length per monomer decreases with increasing spacer length, lmn?0.35±0.01. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2412–2424, 2006  相似文献   

8.
An assembly consisting of three units, that is, a meso‐substituted corrole ( C3 ), 1,8 naphthaleneimide ( NIE ), and a Zn porphyrin ( ZnP ), has been synthesized. NIE is connected to C3 through a 1,3‐phenylene bridge and to the ZnP unit through a direct C? C bond. The convergent synthetic strategy includes the preparation of a trans‐A2B‐corrole possessing the imide unit, followed by Sonogashira coupling with a meso‐substituted A3B‐porphyrin. The photophysical processes in the resulting triad ZnP-NIE-C3 are examined and compared with those of the corresponding C3-NIE dyad and the constituent reference models C3 , NIE , and ZnP . Excitation of the NIE unit in C3-NIE leads to a fast energy transfer of 98 % efficiency to C3 with a rate ken=7.5×1010 s?1, whereas excitation of the corrole unit leads to a reactivity of the excited state identical to that of the model C3 , with a deactivation rate to the ground state k=2.5×108 s?1. Energy transfer to C3 and to ZnP moieties follows excitation of NIE in the triad ZnP-NIE-C3 . The rates are ken=7.5×1010 s?1 and ken=2.5×1010 s?1 for the sensitization of the C3 and ZnP unit, respectively. The light energy transferred from NIE to Zn porphyrin unit is ultimately funneled to the corrole component, which is the final recipient of the excitation energy absorbed by the different components of the array. The latter process occurs with a rate ken=3.4×109 s?1 and 89 % efficiency. Energy transfer processes take place in all cases by a Förster (dipole–dipole) mechanism. The theory predicts quite satisfactorily the rate for the ZnP/C3 couple, where components are separated by about 23 Å, but results in calculated rates that are one to two orders of magnitude higher for the couples NIE/ZnP (D/A) and NIE/C3, which are separated by distances of about 14 and 10 Å, respectively.  相似文献   

9.
The theory describing energy losses of charged non‐relativistic projectiles crossing a planar interface is derived on the basis of the Maxwell equations, outlining the physical assumptions of the model in great detail. The employed approach is very general in that various common models for surface excitations (such as the specular reflection model) can be obtained by an appropriate choice of parameter values. The dynamics of charged projectiles near surfaces is examined by calculations of the induced surface charge and the depth‐ and direction‐dependent differential inelastic inverse mean free path (DIIMFP) and stopping power. The effect of several simplifications frequently encountered in the literature is investigated: differences of up to 100% are found in heights, widths, and positions of peaks in the DIIMFP. The presented model is implemented in a Monte Carlo algorithm for the simulation of the electron transport relevant for surface electron spectroscopy. Simulated reflection electron energy loss spectra are in good agreement with experiment on an absolute scale. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The reduction process of molybdenum in the presence of fulvic acids and phenanthroline was investigated by square-wave voltammetry (SWV). The mixed-ligand complex of molybdenum exhibits a pronounced tendency to adsorb onto the mercury electrode surface. The electrode reaction proceeds as a surface process in which both components of the redox couple are firmly confined to the electrode surface. The kinetics of the electrode reaction is studied utilizing the properties of “split SW peaks” and “quasireversible maximum”. The kinetic parameters obtained with two different square-wave voltammetric methods are in good agreement. In 0.5 mol/L NaCl solution with pH 2.5 the kinetic parameters are: standard rate constant ks=8±2 s−1, cathodic electron transfer coefficient α=0.41±0.05, and number of exchanged electrons n=2. The SW kinetic measurements are confirmed by cyclic voltammetric method.  相似文献   

11.
Electronic structures of the weakly bound Rn2 were calculated by the two‐component Møller–Plesset second‐order perturbation and coupled‐cluster methods with relativistic effective core potentials including spin–orbit operators. The calculated spin–orbit effects are small, but depend strongly on the size of basis sets and the amount of electron correlations. Magnitudes of spin–orbit effects on De (0.7–3.0 meV) and Re (−0.4∼−2.2 Å) of Rn2 are comparable to previously reported values based on configuration interaction calculations. A two‐component approach seems to be a promising tool to investigate spin–orbit effects for the weak‐bonded systems containing heavy elements. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 139–143, 1999  相似文献   

12.
A novel high energetic material, 1‐amino‐1‐methylamino‐2,2‐dinitroethylene (AMFOX‐7), was synthesized through 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7) reacting with methylamine in N‐methyl pyrrolidone (NMP) at 80.0°C, and its structure was determined by single crystal X‐ray diffraction. The crystal is monoclinic, space group P21/m with crystal parameters of a=6.361(3) Å, b=7.462(4) Å, c=6.788(3) Å, β=107.367(9)°, V=307.5(3) Å3, Z=2, µ=0.160 mm?1, F(000)=168, Dc=1.751 g·cm?3, R1=0.0463 and wR2=0.1102. Thermal decomposition of AMFOX‐7 was studied, and the enthalpy, apparent activation energy and pre‐exponential constant of the exothermic decomposition reaction are 303.0 kJ·mol?1, 230.7 kJ·mol?1 and 1021.03 s?1, respectively. The critical temperature of thermal explosion is 245.3°C. AMFOX‐7 has higher thermal stability than FOX‐7.  相似文献   

13.
The synthesis, structure determination and calculated electronic structure of the new phase, Gd2AlGe2, are reported. The compound crystallizes in a new structure type with space group C2/c, a = 10.126(2) Å, b = 5.6837(12) Å, c = 7.7683(16) Å, and β = 104.729(3)s. Tight‐binding linear‐muffin‐tin orbital (TB‐LMTO‐ASA) calculations show a distinct minimum in the total density of states for this structure at 18 valence electrons per formula unit (Gd2AlGe2 has 17 valence electrons in its formula unit), which arises from polar covalent bonding within the three‐dimensional [AlGe2] net, Gd‐Ge interactions and three‐center, two‐electron bonding between Al and Gd. The structure is a new stacking variant of the W2CoB2 structure type, which is observed for numerous ternary rare‐earth silicides and germanides.  相似文献   

14.
The relative sputtering yield of carbon with respect to tantalum was determined for 1 keV Ar+ ion bombardment in the angular range of 70°–82° (measured from surface normal) by means of Auger electron spectroscopy depth profiling of C/Ta and Ta/C bilayers. The ion bombardment‐induced interface broadening was strongly different for the C/Ta and Ta/C, whereas the C/Ta interface was found to be rather sharp, the Ta/C interface was unusually broad. Still the relative sputtering yields (YC/YTa) derived from the Auger electron spectroscopy depth profiles of the two specimens agreed well. The relative sputtering yields obtained were different from those determined earlier on thick layers, calculated by simulation of SRIM2006 and by the fitting equation of Eckstein. The difference increases with increase of angle of incidence. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The isostructural compounds Yb2MgSi2, La2.05Mg0.95Si2, and Ce2.05Mg0.95Si2, as well as Yb2Li0.5Ge2 and Yb1.75Mg0.75Si2, respectively, were synthesized from stoichiometric mixtures of the corresponding elements in sealed Nb‐ ampoules under argon atmosphere. The structures were determined by single crystal X‐ray diffraction: Yb2MgSi2 (P4/mbm (No. 127), a = 7.056(1), c = 4.130(1) Å3, Z = 2), La2.05Mg0.95Si2 (P4/mbm, a = 7.544(1), c = 4.464(1) Å3, Z = 2), and Ce2.05Mg0.95Si2 (P4/mbm, a = 7.425(1), c = 4.370(1) Å3, Z = 2), Yb2Li0.5Ge2 (Pnma (No. 62), a = 7.0601(6), b = 14.628(1), c = 7.6160(7) Å, V = 786.5Å3, Z = 4), Yb1.75Mg0.75Si2 (Pnma, a = 6.9796(1), b = 14.4009(1), c = 7.5357(1) Å, V = 757.43(2) Å3, Z = 4). All compounds contain exclusively Tt‐Tt dumb‐bells (Tt = Si, Ge). The Si‐Si Zintl anions exhibit only very small variations of bond lengths which seem to be more due to cation matrix effects than to effective bond orders.  相似文献   

16.
The antiferromagnetic phase of a 2‐D Wigner crystal is investigated, using a localized representation for electrons. In our model, the electrons are located at the lattice sites of a face‐centered square lattice (corresponding to bcc in the 3‐D case). This lattice may be thought of as consisting of two equivalent interpenetrating sublattices. The ground‐state energies of the antiferromagnetic phase of a 2‐D Wigner electron crystal are computed with uniform neutralizing, Gaussian‐type, and Yukawa‐type positive backgrounds in the range of rs = 5 to 130. The role of correlation energy is suitably taken into account. The possibility of the antiferromagnetic phase of the 2‐D Wigner crystal having a square or circle as the region of occupation in momentum space is also analyzed. The low‐density region favorable for the antiferromagnetic phase of Wigner crystallization is found to be at rs = 7.0. Our results agree well with experimental and other theoretical results for the 2‐D Wigner crystal. The structure‐dependent Wannier functions, which give proper localized representation for Wigner electrons, are constructed and employed in the calculation for the first time. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

17.
The differential virial theorem (DVT) is an explicit relation between the electron density ρ( r ), the external potential, kinetic energy density tensor, and (for interacting electrons) the pair function. The time‐dependent generalization of this relation also involves the paramagnetic current density. We present a detailed unified derivation of all known variants of the DVT starting from a modified equation of motion for the current density. To emphasize the practical significance of the theorem for noninteracting electrons, we cast it in a form best suited for recovering the Kohn–Sham effective potential vs( r ) from a given electron density. The resulting expression contains only ρ( r ), vs( r ), kinetic energy density, and a new orbital‐dependent ingredient containing only occupied Kohn–Sham orbitals. Other possible applications of the theorem are also briefly discussed. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Silver 3d x‐ray photoelectron spectroscopy (XPS) spectra were simulated with the Monte‐Carlo method using an effective energy‐loss function that was derived from a reflected electron energy‐loss spectroscopy (REELS) analysis based on an extended Landau approach. After confirming that Monte‐Carlo simulation based on the use of the effective energy‐loss function can successfully describe the experimental REELS spectrum and Ag 3d XPS spectrum, we applied Monte‐Carlo simulation to predict the angular distribution of Ag 3d x‐ray photoelectrons for different x‐ray incidence angles and different photoelectron take‐off angles. The experimental photoelectron emission microscope that we are constructing was confirmed as being close to the optimum configuration, in which the x‐ray incident angle as measured from the surface normal direction is 74° and the photoelectron take‐off angle is set normal to the surface. The depth distribution functions of the Ag 3d X‐ray photoelectrons for different energy windows suggest that the photoelectron emission microscope will exhibit greater surface sensitivity for narrower photoelectron energy windows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Polyatomic primary ions offer low penetration depth and high damage removal rates in some polymers, facilitating their use in the molecular depth profiling of these polymers by secondary ion mass spectrometry (SIMS). This study is the second in a series of systematic characterizations of the effect of polymer chemistry on degradation under polyatomic primary ion bombardment. In this study, time‐of‐flight SIMS (ToF‐SIMS) was used to measure the damage of ~90 nm thick spin‐cast poly(methyl methacrylate), poly(n‐butyl methacrylate), poly(n‐octyl methacrylate) and poly(n‐dodecyl methacrylate) films under extended (~2 × 1014 ions cm?2) 5 keV SF5+ bombardment. The degradation of the poly(n‐alkyl methacrylates) were compared to determine the effect of the length of the alkyl pendant group on their degradation under SF5+ bombardment. The sputter rate and stability of the characteristic secondary ion intensities of these polymers decreased linearly with alkyl pendant group length, suggesting that lengthening the n‐alkyl pendant group resulted in increased loss of the alkyl pendant groups and intra‐ or intermolecular cross‐linking under SF5+ bombardment. These results are partially at variance with the literature on the thermal degradation of these polymers, which suggested that these polymers degrade primarily via depolymerization with minimal intra‐ or intermolecular cross‐linking. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
The energy spectra of free water molecules were measured at scattering angles 2θ ranging from 10.5° to 75.7°, using an angle-dispersive-type diffractometer and synchrotron radiation as an X-ray source. A silicon (111) monochrometer was used to obtain incident X-rays with the wavelengths of (1.543/n) Å (n = 1,3,4,5). Observed inelastic scattering peaks are clearly separated from eleastic ones at s values [s = (4π/λ) sin Å] larger than 8 Å?1. The increase of the separation with an increasing s value was consistent with the classical theory of the Compton shift. The total (elastic plus inelastic) intensities were obtained over a range of s = 0.74–5.0 Å?1. Experimental difference intensities Δσee and Δσne were obtained separately by combining the X-ray and high-energy electron scattering data. The experimental results are in reasonable agreement with the theoretical intensities calculated from SCF and CI molecular wave functions with a basis set of double-zeta plus polarization functions. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号