首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this article, novel smart hydrogels based on biodegradable pH sensitive poly(L ‐glutamic acid‐g‐2‐hydroxylethyl methacrylate) (PGH) chains and temperature‐sensitive hydroxypropylcellulose‐g‐acrylic acid (HPC‐g‐AA) segments were designed and synthesized. The influence of pH and temperature on the equilibrium swelling ratios of the hydrogels was discussed. The optical transmittance of the hydrogels was also changed as a function of temperature, which reflecting that the HPC‐g‐AA part of the hydrogels became hydrophobic at the temperature above the lower critical solution temperature (LCST). At the same time, the LCST of the hydrogels had a visible pH‐dependent behavior. Scanning electron microscopic analysis revealed the morphology of the hydrogels before and after enzymatic degradation. The biodegradation rate of the hydrogels was directly related to the PGH content and the pH value. The in vitro release of bovine serum albumin from the hydrogels were investigated. The release profiles indicated that both the HPC‐g‐AA and PGH contents played important roles in the drug release behaviors. These results show that the smart hydrogels seem to be of great promise in pH–temperature oral drug delivery systems. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
In this article, the synthesis and characterization of novel hydrogel systems designed for colon‐targeting drug delivery are reported. The gels were composed of konjac glucomannan, copolymerized with acrylic acid, and crosslinked by the aromatic azo agent bis(methacryloylamino)‐azobenzene. The influence of various parameters on the dynamic and equilibrium swelling ratios (SRs) of the hydrogels was investigated. It is shown that the SR was inversely proportional to the grafting degree of acrylic acid and the content of bis(methacryloylamino)‐azobenzene. The dependence of SR on the pH indicates that obtained hydrogels are potential for drug delivery to colon. It was possible to modulate the degree of swelling and the pH sensitivity of the gels by changing crosslinking density of the polymer. The main chain of hydrogels can be degraded by β‐glycosidase which is abundant in colon. They can be in vitro degraded for 73% in a month by Cereflo® and 86% in 20 days by Mannaway25L. We have also prepared the hydrogels that loaded with bovine serum albumin about 1.5%, 3%, 9%, and 20% by weight. In vitro release of model drug bovine serum albumin was studied in the presence of Mannaway25L or Fungamyl®800L in pH 7.4 phosphate buffer at 37 °C. The drug release can be controlled by the biodegradation of the hydrogels. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4370–4378, 2004  相似文献   

3.
A series of hydrophobically modified poly(acrylic acid) gels were prepared by the radical copolymerization of acrylic acid and small amounts of hydrophobic comonomers, 2‐(N‐ethylperfluorooctane‐sulfoamido)ethyl methacrylate and lauryl acrylate, in tert‐butanol. The effects of the fractions and species of hydrophobes on hydrophobic association were determined. The hydrophobic association within the hydrophobically modified gels was proven with measurements of swelling and fluorescence as well as Fourier transform infrared spectroscopy. Fluorocarbon‐modified hydrogels showed stronger hydrophobicity than hydrocarbon‐modified hydrogels. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1236–1244, 2002  相似文献   

4.
Hydrogels based on n‐alkyl methacrylate esters (n‐AMA) of various chain lengths, acrylic acid, and acrylamide crosslinked with 4,4′‐di(methacryloylmino)azobenzene were prepared. Swelling kinetics and the mechanism of degradation in vitro of the hydrogels as well as the mutual relations between both were studied by the immersion of slabs in buffered solutions at pH 7.4. The diffusion of water into the slabs was discussed on the stress‐relaxation model of polymer chains. The results obtained agreed well with Schott's second‐order diffusion kinetics. The gels are degradable by anaerobes in the colon. The results obtained showed that the degradation of networks proceeded via a pore mechanism. The factors influencing the swelling and degradation of the gels include the degree of crosslinking, the lengths of the n‐AMA side chains, and the composition. These hydrogels have the potential for colon‐specific drug delivery. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3128–3137, 2001  相似文献   

5.
A hybrid hydrogel composed of solid lipid nanoparticles (LNPs) entrapped within chemically cross‐linked carboxymethylcellulose (CMC) is developed to achieve localized and sustained release of lipophilic drugs. The analysis of LNP stability as well as the hydrogel swelling and mechanical properties confirm the successful incorporation of particles up to a concentration of 50% w/wCMC. The initial LNP release rate can be prolonged by increasing the particle diameter from 50 to 120 nm, while the amount of long‐term release can be adjusted by tailoring the particle surface charge or the cross‐linking density of the polymer. After 30 d, 58% of 50 nm diameter negatively charged LNPs escape from the matrix while only 17% of positively charged nanoparticles are released from materials with intermediate cross‐linking density. A mathematical diffusion model based on Fick's second law is efficient to predict the diffusion of the particles from the hydrogels.  相似文献   

6.
In this work, a series of biodegradable and pH‐responsive hydrogels based on polyphosphoester and poly(acrylic acid) are presented. A novel biodegradable macrocrosslinker α‐methacryloyloxyethyl ω‐acryloyl poly(ethyl ethylene phosphate) (HEMA‐PEOP‐Ac) was synthesized by first ring‐opening polymerization of the cyclic monomer 2‐ethoxy‐2‐oxo‐1,3,2‐dioxaphospholane using HEMA as the initiator and Sn(Oct)2 as catalyst, and subsequent conversion of hydroxyl into vinyl group. The hydrogels were then fabricated by the copolymerization of the macromonomer with acrylic acid, and their swelling/deswelling and degradation behaviors were investigated. The results demonstrated that the crosslinking density and pH values of media strongly influenced both the swelling ratio and the degradation rate of the hydrogels. The rheological properties of these hydrogels were also studied from which the storage modulus (G′) showed clear dependence on the crosslinking density. MTT and “live/dead” assay showed that these hydrogels were compatible to fibroblast cells, not exhibiting apparent cytotoxicity even at high concentrations. Moreover, in vitro bovine serum albumin release from these hydrogels was also investigated, and it could be found that the release profiles showed a burst effect followed by a continuous release phase, and the release rate was inversely proportional to the crosslinking density of hydrogels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1919–1930, 2010  相似文献   

7.
Dual thermo‐ and pH‐sensitive network‐grafted hydrogels made of poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) network and poly(N‐isopropylacrylamide) (PNIPAM) grafting chains were successfully synthesized by the combination of atom transfer radical polymerization (ATRP), reversible addition‐fragmentation chain transfer (RAFT) polymerization, and click chemistry. PNIPAM having two azide groups at one chain end [PNIPAM‐(N3)2] was prepared with an azide‐capped ATRP initiator of N,N‐di(β‐azidoethyl) 2‐chloropropionylamide. Alkyne‐pending poly(N,N‐dimethylaminoethyl methacrylate‐co‐propargyl acrylate) [P(DMAEMA‐co‐ProA)] was obtained through RAFT copolymerization using dibenzyltrithiocarbonate as chain transfer agent. The subsequent click reaction led to the formation of the network‐grafted hydrogels. The influences of the chemical composition of P(DMAEMA‐co‐ProA) on the properties of the hydrogels were investigated in terms of morphology and swelling/deswelling kinetics. The dual stimulus‐sensitive hydrogels exhibited fast response, high swelling ratio, and reproducible swelling/deswelling cycles under different temperatures and pH values. The uptake and release of ceftriaxone sodium by these hydrogels showed both thermal and pH dependence, suggesting the feasibility of these hydrogels as thermo‐ and pH‐dependent drug release devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Reducibly degradable hydrogels of poly(N‐isopropylacrylamide) (PNIPAM) and poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) were synthesized by the combination of reversible addition‐fragmentation chain transfer (RAFT) polymerization and click chemistry. The alkyne‐pending copolymer of PNIPAM or PDMAEMA was obtained through RAFT copolymerization of propargyl acrylate with NIPAM or DMAEMA. Bis‐2‐azidyl‐isobutyrylamide of cystamine (AIBCy) was used as the crosslinking reagent to prepare reducibly degradable hydrogels by click chemistry. The hydrogels exhibited temperature or pH stimulus‐responsive behavior in water, with rapid response, high swelling ratio, and reproducible swelling/shrinkage cycles. The loading and release of ceftriaxone sodium proved the feasibility of the hydrogels as the stimulus‐responsive drug delivery system. Furthermore, the presence of disulfide linkage in AIBCy favored the degradation of hydrogels in the reductive environment. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3604–3612, 2010  相似文献   

9.
Degradable hydrogels crosslinked with disulfide bonds were prepared by Michael addition between amine groups of branched polyethylenimine and carbon–carbon double bonds of N,N′‐bis(acryloyl)cystamine. The influences of the chemical composition of the resulted hydrogels on their properties were examined in terms of morphology, surface area, swelling kinetics, and degradation. The hydrogels were uniformly crosslinked and degraded into water‐soluble polymers in the presence of the reducing agent of dithiothreitol, which improved the control over the release of encapsulated drug. The degradation of hydrogels can trigger the release of encapsulated molecules, as well as facilitate the removal of empty vehicles. Results obtained from in vitro drug release suggested that the disulfide crosslinked hydrogels exhibited an accelerated release of encapsulated drug in dithiothreitol‐containing PBS buffer solution. Moreover, the drug release rate decreased gradually with increasing crosslinking density. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4074–4082, 2009  相似文献   

10.
In this work we propose a new crosslinking agent and the method to use it for the synthesis of acrylate based hydrogels. The use of this diacrylate of glycerol, synthesized in our laboratory, allows the generation of materials with well defined micro‐structures in the dry state, unique meso‐ and macro‐structures during swelling, and enhanced mechanical properties and swelling capacity in water. These properties depend on the crosslinking agent concentration, as well as synthesis thermal history. Poly(acrylamide‐co‐acrylic acid) hydrogels are commonly crosslinked with N, N′‐methylenebisacrylamide or N‐isopropylacrylamide. Here we obtain and use a new crosslinking agent, obtained from the reaction between glycerol and acrylic acid to produce a Diacrylate of glycerol (DAG). Two synthesis methods at equivalent molar ratio of acrylamide/acrylic acid (AM/AA) were analyzed. The mechanical properties, the swelling capacity, and the morphology at microscale of these hydrogels showed a well defined transition at a critical concentration of crosslinking agent. DAG induces the generation of hydrogels with hierarchichal structure. The micro‐structure surface morphology was investigated by scanning electron microscopy, the meso‐structure by polarized light microscopy and the macro‐structure by CCD imaging. The hydrogels with hierarchical structures showed improved mechanical properties when compared with structureless hydrogels. Control of the microstructure allows the generation of materials for different applications, i.e. templates or smart materials that interact with electromagnetic radiation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2667–2679, 2008  相似文献   

11.
The tensile dynamic mechanical properties and weight degree of swelling for anionic 2‐hydroxyethyl methacrylate‐co‐acrylic acid hydrogels were observed. Fabrication parameters examined were UV‐photopolymerization exposure time, UV‐photopolymerization intensity, and weight percentage crosslinker. The environmental conditions tested were electrolyte compositions of 0.5 and 0.05 M potassium hydroxide under applied frequencies of 0.1, 1, or 10 Hz. The overall maximum and minimum storage modulus was 1.83 ± 0.18 MPa and 68.5 ± 7.2 kPa, respectively, loss modulus was 432 ± 63 and 7.67 ± 3.22 kPa, respectively, and weight degree of swelling was 14.27 ± 1.27 and 1.95 ± 0.33, respectively. The morphology of fabricated hydrogels was examined using scanning electron microscopy showing a range of porous structures over the fabrication and environmental conditions examined, accounting for the variation in mechanical properties. The properties examined are of interest to researchers fabricating, designing, or modeling active hydrogel‐based microfluidic components. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

12.
The comb‐type grafted hydrogels poly(N‐isopropylacrylamide)‐g‐poly(N‐isopropylacrylamide) (PNIPAM‐g‐PNIPAM) and poly(acrylic acid)‐g‐poly(N‐isopropylacrylamide) (PAAc‐g‐PNIPAM) were prepared by reversible addition–fragmentation chain transfer polymerization. A macromolecular chain‐transfer agent was prepared first. Then, hydrogels were obtained by a reaction with a comonomer (N‐isopropylacrylamide or acrylic acid) in the presence of N,N‐methylenebisacrylamide as a crosslinker. The equilibrium swelling ratios and the swelling and deswelling kinetics of PNIPAM‐g‐PNIPAM were measured. The effects of the chain length and amount on the swelling behavior were investigated. The deswelling mechanism was illustrated. Meanwhile, the PAAc‐g‐PNIPAM hydrogel was used to confirm the versatility of this novel method. It was prepared in an alcoholic medium, whereas hydrogen‐bonding complexes formed in 1,4‐dioxane, which was chosen as the reaction medium for the PNIPAM‐g‐PNIPAM hydrogel. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2615–2624, 2005  相似文献   

13.
The formation of polyelectrolyte complexes of linear copolymers and hydrogels based on copolymers of 2‐[(methacryloyloxy)ethyl]trimethylammonium chloride with N‐isopropylacrylamide (MADQUAT–NIPAAM) and poly(acrylic acid) (PAA) has been studied. The composition of the copolymer has been found to affect the composition of the polyelectrolyte complexes significantly, and the molecular weight of PAA influences their aggregation stability. Hydrogels of MADQUAT–NIPAAM immersed in solutions of PAA undergo contraction because of the formation of gel–polymer complexes. The rate of contraction and the final swelling degree of the gel–polymer complexes depend on the concentration of PAA in solution and its molecular weight. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1506–1513, 2004  相似文献   

14.
The synthesis and characterization of thermoresponsive hydrogels on the basis of N‐isopropylacrylamide (IPAAm) copolymers crosslinked with biodegradable poly(amino acids) are described. This hydrogel was prepared with two kinds of reactive IPAAm‐based copolymers containing poly(amino acids) as the side‐chain groups and activated ester groups. We introduced the graft chains by decarboxylation polymerization of amino acid N‐carboxyanhydrides initiated from lateral amino groups in the PIPAAm copolymer. The hydrogels easily crosslinked with degradable poly(amino acid) chains by only mixing the copolymer aqueous solutions. The gelling method in this study would provide some of the following innovative features: (1) no necessary removal of unreacted monomers and so forth, (2) simpler loading of drugs into the hydrogels (only mixing when gelling), and (3) easier insertion into the body. On the basis of the swelling ratio measurement of the hydrogel, large volume changes dependent on temperature changes were observed. Moreover, the enzymatic temperature‐dependent degradation was confirmed. The results suggested that these hydrogels could be used for an injectable or implantable matrix of temperature‐modulated drug release. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 779–787, 2003  相似文献   

15.
In this work, we report a series of poly(itaconic acid‐co‐acrylic acid‐co‐acrylamide) (poly(IA‐co‐AAc‐co‐AAm)) hydrogels via frontal polymerization (FP). FP starts on the top of the reaction mixture with aid of heating provided from soldering iron gun. Once polymerization initiated, no further energy is required to complete the process. The influences of IA/AAc weight ratios on frontal velocities, temperatures, and conversions on the reaction time are thoroughly investigated and discussed where the amount of AAm monomer remains constant. Fourier transform‐infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscope (SEM), dynamic mechanical analysis, and the swelling measurement are applied to characterize the as‐synthesized poly(IA‐co‐AAc‐co‐AAm) hydrogels. Interestingly, the swelling ratios of the hydrogels are changed with different IA/AAc contents, and the maximum swelling ratios are ~4439% in water. SEM images describe highly porous morphologies and explain good swelling capabilities. Moreover, the poly(IA‐co‐AAc‐co‐AAm) hydrogels exhibit superior pH‐responsive ability. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2214–2221  相似文献   

16.
N‐Isopropylacrylamide/itaconic acid copolymeric hydrogels were prepared by irradiation of the ternary mixtures of N‐isopropylacrylamide/itaconic acid/water by γ‐rays at ambient temperature. The dependence of swelling properties and phase transitions on the comonomer concentration and temperature were investigated. The hydrogels showed both temperature and pH responses. The effect of comonomer concentration on the uptake and release behavior of the hydrogels was studied. Methylene blue (MB) was used as a model drug for the investigation of drug uptake and release behavior of the hydrogels. The release studies showed that the basic parameters affecting the drug release behavior of the hydrogels were pH and temperature of the solution. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
The solubility parameters of pure poly(2‐hydroxyethyl methacrylate) (PHEMA) and poly(2‐hydroxyethyl methacrylate/itaconic acid) [P(HEMA/IA)] hydrogels were determined by 20 solvents with various solubility parameters in swelling experiments. The solubility parameter of pure PHEMA was 26.93 ± 0.46 (MPa)1/2. The effect of mole percentages of itaconic acid (IA) in P(HEMA/IA) hydrogels on the solubility parameter was investigated. The measured values were compared to literature and solubility values theoretically determined by group contribution values of van Krevelen and Hoy. The incorporation of IA into the hydrogel system slightly increased the solubility parameter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1995–2003, 2002  相似文献   

18.
Degrading hydroxyethylmethacrylate‐grafted dextran (dex‐HEMA) hydrogels generate a relatively sudden increase in osmotic pressure upon degradation into dextran solutions. This phenomenon is currently being examined as a possible means of developing a pulsatile drug‐delivery system. Here a mathematical model based on scaling concepts is presented to describe this sudden increase in swelling pressure and to provide a framework for the rational design of pulsatile delivery systems based on this phenomena. The model provides a good fit to the swelling pressures measured for dex‐HEMA gel/free dextran mixtures that simulate degrading dex‐HEMA gels. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3397–3404, 2004  相似文献   

19.
In this work, a dually sensitive colloidal crystal (CC)‐loaded hydrogel has been synthesized via frontal polymerization (FP) in a facile and rapid way. First, a polystyrene CC film was fabricated by vertical deposition on the inner wall of a test tube. Then, a mixture of acrylic acid (AAc), 2‐hydroxyethyl methacrylate (HEMA), and glycerol along with the initiator and crosslinker was added to this test tube to carry out FP, resulting in the formation of CC‐loaded hydrogel. The influence of the mass ratios of HEMA/AAc on front velocity and temperatures were studied. The swelling behavior, the morphology, and the stimuli‐responsive behavior of the CC‐loaded hydrogels prepared via FP were thoroughly investigated on the basis of swelling measurement, scanning electron microscopy, and reflection spectra. Results show that the as‐prepared CC‐loaded hydrogels exhibit excellent dual sensitivity to both methanol concentrations and pH values with very short response time, which can be observed visually without the aid of instruments. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
The enzymatically degradable poly(N‐isopropylacrylamide‐co‐acrylic acid) hydrogels were prepared using 4,4‐bis(methacryloylamino)azobenzene (BMAAB) as the crosslinker. It was found that the incorporated N‐isopropylacrylamide (NIPAAm) monomer did not change the enzymatic degradation of hydrogel, but remarkably enhanced the loading of protein drug. The hydrogels exhibited a phase transition temperature between 4°C (refrigerator temperature) and 37°C (human body temperature). Bovine serum albumin (BSA) as a model drug was loaded into the hydrogels by soaking the gels in a pH 7.4 buffer solution at 4°C, where the hydrogel was in a swollen status. The high swelling of hydrogels at 4°C enhanced the loading of BSA (loading capability, ca. 144.5 mg BSA/g gel). The drug was released gradually in the pH 7.4 buffer solution at 37°C, where the hydrogel was in a shrunken state. In contrast, the enzymatic degradation of hydrogels resulted in complete release of BSA in pH 7.4 buffer solution containing the cecal suspension at 37°C (cumulative release: ca. 100 mg BSA/g gel after 4 days). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号