首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
With differential scanning calorimetry, we have demonstrated a peculiar behavior under equilibrium conditions of neat poly(ε‐caprolactone) and its organophilic montmorillonite nanocomposites. In particular, in the determination of the equilibrium melting temperature by the extrapolation of the data of the melting temperature (Tm) versus the crystallization temperature (Tc), a bimodal trend has been observed. At the lower Tc's, the data of Tm follow a constant trend, whereas at the higher ones, the usual increasing trend has been obtained. Morphological observations by atomic force microscopy (AFM) have provided evidence of two different crystalline morphologies for the lower and higher Tc ranges. Moreover, AFM has shown that the thermal treatments strongly influence the clay dispersion in the polymer matrix. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 22–32, 2006  相似文献   

2.
The structural characterization and transport properties of blends of a commercial high molecular weight poly(?‐caprolactone) with different amounts of a montmorillonite‐poly(?‐caprolactone) nanocomposite containing 30 wt % clay were studied. Two different vapors were used for the sorption and diffusion analysis—water as a hydrophilic permeant and dichloromethane as anorganic permeant—in the range of vapor activity between 0.2 and 0.8. The blends showed improved mechanical properties in terms of flexibility and drawability as compared with the starting nanocomposites. The permeability (P), calculated as the product of the sorption (S) and the zero‐concentration diffusion coefficient (D0), showed a strong dependence on the clay content in the blends. It greatly decreased on increasing the montmorillonite content for both vapors. This behavior was largely dominated by the diffusion parameters. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1118–1124, 2002  相似文献   

3.
In the last few years much progress has been made in the development of hybrid polymer–inorganic filler nanocomposites. Nevertheless, many questions remain. The comprehension of the structure and the interactions at the polymer–nanofiller interface are crucial to foresee and control the properties of nanocomposites. Because of the high surface ratio of the inorganic nanofiller, the interface is expected to have a prevailing role in determining the nanocomposite properties. In this study we use X‐ray photoelectron spectroscopy (XPS) as a tool for the surface characterization of an organophilic montmorillonite/poly(ε‐caprolactone) exfoliated nanocomposite. The XPS core levels of the nanocomposite have been compared with those obtained from its precursors, and analyzed as reference compounds to evaluate eventual differences attributable to the polymer–nanofiller interfacial interactions. The XPS investigation has allowed us to propose a qualitative model of possible interface interactions between poly(ε‐caprolactone) and the organo‐modified montmorillonite. The model is substantiated by Fourier transform infrared spectroscopy (FTIR). © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3907–3919, 2004  相似文献   

4.
Hydroxyl‐functionalized three‐arm poly(?‐caprolactone)s (PGCL‐OHs) were synthesized by the ring‐opening polymerization of ?‐caprolactone in the presence of glycerol (as the core) and stannous octoate. The effect of the feed ratio of ?‐caprolactone to glycerol on the ring‐opening polymerization was studied. These three‐arm PGCL‐OHs were then converted into double‐bond‐functionalized three‐arm poly(?‐caprolactone)s (PGCL‐Mas) by the reaction of PGCL‐OH with maleic anhydride in the melt at 130 °C. The quantitative conversion of hydroxyl functionality was achieved at a low molecular weight. The resulting PGCL‐OH and PGCL‐Ma were characterized with gel permeation chromatography, Fourier transform infrared, 1H NMR, 13C NMR, and differential scanning calorimetry. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1127–1141, 2002  相似文献   

5.
Poly(ε‐caprolactone) (PCL) chains grafted onto montmorillonite modified by a mixture of nonfunctional ammonium salts and ammonium‐bearing hydroxyl groups were prepared. The clay content was fixed to 3 wt %, whereas the hydroxyl functionality was 25, 50, 75, and 100%, obtaining an intercalated or exfoliated system. The transport properties of water and dichloromethane vapors and the mechanical properties were investigated. The mechanical and dynamic mechanical analyses showed improvement of the nanocomposite elastic modulus in a wide temperature range. Interestingly, for the higher hydroxyl contents (50, 75, and 100%), the decrease of modulus at higher temperature, due to the PCL crystalline melting, did not lead to the loss of mechanical consistence of the samples. Consequently, they revealed a measurable modulus up to 120 °C, a much higher temperature with respect to pure PCL. Water sorption was investigated in the entire activity range, and a lower sorption was observed on increasing the hydroxyl content, up to the sample with 100% hydroxyl content, which turned to be completely impermeable, even in liquid water. The sample with 75% hydroxyl content showed a threshold activity (a = 0.4) below which it was impermeable to water vapor. Also, the diffusion parameters decreased when the hydroxyl content increased, up to the 100% sample, which showed zero diffusion. The diffusion parameters of an organic vapor, dichloromethane, also exhibited a decreasing value on increasing the hydroxyl content in the nanocomposites. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1466–1475, 2004  相似文献   

6.
Organic–inorganic hybrid diblock copolymers composed of poly(ε‐caprolactone) and poly(MA POSS) [PCL‐b‐P(MA POSS)] were synthesized via reversible addition‐fragmentation chain transfer polymerization of 3‐methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane (MA POSS) with dithiobenzoate‐terminated poly(ε‐caprolactone) as the macromolecular chain transfer agent. The dithiobenzoate‐terminated poly(ε‐caprolactone) (PCL‐CTA) was synthesized via the atom transfer radical reaction of 2‐bromopropionyl‐terminated PCL with bis(thiobenzoyl)disulfide in the presence of the complex of copper (I) bromide with N,N,N′,N″,N″‐pentamethyldiethylenetriamine. The results of molecular weights and polydispersity indicate that the polymerizations were in a controlled fashion. The organic–inorganic diblock copolymer was incorporated into epoxy to afford the organic–inorganic nanocomposites. The nanostructures of the organic–inorganic composites were investigated by means of transmission electron microscopy and dynamic mechanical thermal analysis. Thermogravimetric analysis shows that the organic–inorganic nanocomposites displayed the increased yields of degradation residues compared to the control epoxy. In the organic–inorganic nanocomposites, the inorganic block [viz., P(MA POSS)] had a tendency to enrich at the surface of the materials and the dewettability of surface for the organic–inorganic nanocomposites were improved in terms of the measurement of surface contact angles. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
Superparamagnetic and biodegradable/biocompatible core–corona nanocomposite particles were prepared by ring‐opening polymerization of ?‐caprolactone initiated from the surface of maghemite. As was done in a previous work, an aminosilane coupling agent was chosen as the coinitiator and immobilized at the surface of the maghemite particles to allow the growth of the poly(?‐caprolactone) (PCL) chains from the solid surface. Two different catalytic systems based on aluminum and tin alkoxides were investigated. Whatever the catalyst used, diffuse reflectance Fourier transform spectroscopy brought evidence for polymer anchoring through a covalent bond, whereas thermogravimetric analysis attested to the presence of high amounts of PCL around the maghemite. Magnetization measurements proved that the nanocomposites kept their superparamagnetic properties after coating. The polymer contents obtained by this grafting‐from route were compared with the results obtained by a more classical grafting‐to process. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3221–3231, 2005  相似文献   

8.
Biodegradable poly(butylene succinate) (PBSU)/carboxyl‐functionalized multi‐walled carbon nanotubes (f‐MWNTs) nanocomposites were prepared via solution casting method at low f‐MWNTs loadings of 0.5 and 1 wt%, respectively, in this work. Scanning and transmission electron microscopic observations reveal a fine dispersion of f‐MWNTs throughout the PBSU matrix. Non‐isothermal melt crystallization at different cooling rates, isothermal melt crystallization at different crystallization temperatures, spherulitic morphology, and crystal structure of neat PBSU and its nanocomposites were investigated with various techniques in detail. The addition of f‐MWNTs is found to enhance the crystallization of PBSU, apparently in the nanocomposites during both nonisothermal and isothermal melt crystallization, due to the heterogeneous nucleation effect; however, the crystallization mechanism and crystal structure of PBSU remain almost unchanged. Effect of the presence of f‐MWNTs and their loadings on the thermodynamic driving force for nucleation and nucleation activity of PBSU was evaluated quantitatively through two methods. Moreover, it is found that incorporating with 1 wt% f‐MWNTs significantly improves the storage modulus of PBSU in the nanocomposites by about 147% at room temperature as compared with that of neat PBSU. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
To synthesize the copolyester of poly(β‐hydroxybutyrate) (PHB) and poly(?‐caprolactone) (PCL), the transesterification of PHB and PCL was carried out in the liquid phase with stannous octoate as the catalyzer. The effects of reaction conditions on the transesterification, including catalyzer concentration, reaction temperature, and reaction time, were investigated. The results showed that both rising reaction temperature and increasing reaction time were advantageous to the transesterification. The sequence distribution, thermal behavior, and thermal stability of the copolyesters were investigated by 13C NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, optical microscopy, and thermogravimetric analysis. The transesterification of PHB and PCL was confirmed to produce the block copolymers. With an increasing PCL content in the copolyesters, the thermal behavior of the copolyesters changed evidently. However, the introduction of PCL segments into PHB chains did not affect its crystalline structure. Moreover, thermal stability of the copolyesters was little improved in air as compared with that of pure PHB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1893–1903, 2002  相似文献   

10.
Polymer networks showing a thermally induced shape‐memory effect were prepared through the crosslinking of oligo(?‐caprolactone)dimethacrylates under photocuring with or without an initiator. The influence of the molecular weight of the oligo(?‐caprolactone)dimethacrylates and the initiator concentration on the macroscopic properties of the polymer networks was investigated. The isothermal and nonisothermal crystallization behavior of the polymer networks was evaluated as a basic principle of the functionalization process. Shape‐memory properties such as the strain fixity and strain recovery rate were quantified with cyclic thermomechanical tensile experiments for different maximum elongations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1369–1381, 2005  相似文献   

11.
This work reported the preparation and physical properties of biodegradable nanocomposites fabricated using polylactic acid (PLA) and multiple organic modified montmorillonite (MMT). In order to improve the chemical compatibility between PLA and Na‐MMT, the surface of Na‐MMT was first organically modified by cetyl trimethyl ammonium bromide (CTAB) and resorcinol bis(diphenyl phosphate) (RDP) using ion‐exchange and adsorption technique. Both Fourier transform infrared and X‐ray diffraction (XRD) results indicated that CTAB and RDP molecules were intercalated into the galleries of MMT sheets to enlarge the interlayer spacing. Then, the PLA/MMT nanocomposites were prepared by a simple melt‐blending method. The XRD and TEM results of the nanocomposites indicated that the PLA polymer chains inserted into the galleries of co‐modified MMT (C‐MMT) and contained disorderedly intercalated layered silicate layers within a PLA matrix. The C‐MMT nanolayers were homogenously dispersed in PLA matrix, resulting in various property enhancement. The fabricated PLA/C‐MMT nanocomposites with 5.0 wt% addition showed significant enhancements (176%) in the storage modulus compared to that of neat PLA. The thermal stability and fire resistance were also remarkably improved. These improvements are probably because of both the physical barrier effect of the MMT nanosheets and charring effect of the C‐MMT. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Biodegradable poly(3‐hydroxybutyrate) (PHB)/functionalized multi‐walled carbon nanotubes (f‐MWNTs) nanocomposite was prepared in this work by solution casting method at 2 wt% f‐MWNTs loading. Scanning electron microscopy and transmission electron microscopy observations indicate a homogeneous distribution of f‐MWNTs in the PHB matrix. Nonisothermal melt crystallization, overall isothermal melt crystallization kinetics, and crystalline morphology of neat PHB and the PHB/f‐MWNTs nanocomposite were studied in detail. It is found that the presence of f‐MWNTs enhances the crystallization of PHB during nonisothermal and isothermal melt crystallization processes in the nanocomposite due to the heterogeneous nucleation effect of f‐MWNTs. Moreover, the incorporation of a small quantity of f‐MWNTs apparently improves the thermal stability of the PHB/f‐MWNTs nanocomposite with respect to neat PHB. Two methods are employed to study the activation energies of thermal degradation for both the neat PHB and the PHB/f‐MWNTs nanocomposite. The activation energy of thermal degradation of the PHB/f‐MWNTs nanocomposite is higher than that of neat PHB. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Hydroxyl‐terminated poly(butadiene) (HTPB; Mn = 2100 g mol−1) was capped with 30 and 60 wt % of ɛ‐caprolactone to reach amphiphilic triblock copolymers in form of capped poly(butadiene) CPB. The former (CPB30; Mn = 3300 g/mol) is amorphous with a glass temperature of −56 °C. CPB60 (Mn = 4000 g mol−1) is semi‐crystalline with a melting point of 50 °C and a glass transition at −47 °C. The CPBs, HTPB and polycaprolactone diol (Mn = 2000 g mol−1) were used as soft segment components in the preparation of polyurethane elastomers (PUE), using a 1/1 mixture of an MDI prepolymer and uretonimine modified MDI, and hard phase components in form of 1,3‐propane diol, 1,4‐butane diol, and 1,5‐pentane diol. CPB‐based elastomers with 1,4 butane diol (8 wt %) show hard domains as fringed aggregates with a better connection to the continuous phase than the HTPB‐based PUE. The soft segment glass transition temperature (Tg) is at −28 °C for HTPB‐based PUE and at −43 °C for those of CPB. The tensile strength of the CPB30&60‐based PUE is found between 20 and 30 MPa at an elongation at break of 400% and 550%, respectively. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1162–1172  相似文献   

14.
A facile method to prepare shape memory polymers crosslinked by SiO2 is described. A series of biodegradable shape memory networks were obtained through thiol‐ene reaction triggered by UV irradiation between surface‐thiol‐modified SiO2 nanoparticles and end‐acrylate poly (ε‐caprolactone) (PCL). The highly selective thiol‐ene reaction ensured a uniform distribution of PCL chains between crosslinkers, contributing well‐defined network architecture with enhanced mechanical and shape‐memory properties. Thiol‐functionalized silica nanoparticle was characterized by using FTIR and XPS analysis, and 1H NMR spectra was used to confirm the successful modification of terminal hydroxyl group of PCL diol. Surface‐modified silica particles were found well dispersible in acrylate‐capped PCL supported by SEM. Thermal and crystalline behaviors of the obtained polymers were analyzed by DSC and XRD, and DMA measurement proved good mechanical property. The shape memory behavior and tensile strength was somewhat tunable by the length of PCL. Acceptably, sample SiO2‐SMP2k presented 99% recovery ratio and 97% shape fixity, and its relatively high tensile strength showed an attractive potential for biomedical application. Finally, a possible molecular mechanism accounting for the shape memory property was illustrated. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 692–701  相似文献   

15.
Novel, biodegradable poly(?‐caprolactone)‐block‐poly(trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline)‐block‐poly(?‐caprolactone) triblock copolymers were synthesized by ring‐opening polymerization from dihydroxyl‐terminated macroinitiator poly(trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline) (PHpr) and ?‐caprolactone (?‐CL) with stannous octoate as the catalyst. The molecular weights were characterized with gel permeation chromatography and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. With an increase in the contents of ?‐CL incorporated into the copolymers, a decrease in the glass‐transition temperature (Tg) was observed. The Tg values of copoly(4‐phenyl‐?‐caprolactone) and copoly(4‐methyl‐?‐caprolactone) were higher than Tg of copoly(?‐caprolactone). Their micellar characteristics in an aqueous phase were investigated with fluorescence spectroscopy, dynamic light scattering, and transmission electron microscopy. The block copolymers formed micelles in the aqueous phase with critical micelle concentrations in the range of 1.00–1.36 mg L?1. With higher molecular weights and hydrophobic components in the copolymers, a higher critical micelle concentration was observed. As the feed weight ratio of antitriptyline hydrochloride (AM) to the polymer increased, the drug loading increased. The micelles exhibited a spherical shape, and the average size was less than 250 nm. The in vitro hydrolytic degradation and controlled drug release properties of the triblock copolymers were also investigated. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4268–4280, 2006  相似文献   

16.
Multi‐walled carbon nanotube/poly(ε‐caprolactone) composites (PCLCNs) were prepared by melt compounding. The rheology, nonisothermal crystallization behavior, and thermal stability of PCLCNs were, respectively, investigated by the parallel‐plate rheometer, differential scanning calorimeter, and TGA. Cole–Cole plots were employed successfully to detect the rheological percolation of PCLCNs under small amplitude oscillatory shear. PCLCNs present a low percolation threshold of about 2–3 wt % in contrast to that of clay‐based nanocomposites. The percolated nanotube network is very sensitive to the steady shear deformation, and is also to the temperature, which makes the principle of time‐temperature superposition be invalid on those percolated PCLCNs. Small addition of nanotube cannot improve the thermal stability of PCL but can increase crystallization temperature remarkably due to the nucleating effect. As the nanotube is much enough to be percolated, however, the impeding effect becomes the dominant role on the crystallization, and the thermal stability increases to some extent. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3137–3147, 2007  相似文献   

17.
12‐Hydroxydodecanoate (HD) anions were intercalated, via an ion‐exchange procedure, onto a Mg/Al hydrotalcite‐like compound with the formula [Mg0.65Al0.35(OH)2](NO3)0.35·0.56H2O. The obtained intercalate, characterized by chemical and thermal analyses, X‐ray powder diffraction, and Fourier transform infrared spectroscopy, had the formula [Mg0.65Al0.35(OH)2](NO3)0.08(HD)0.28·0.56H2O and an interlayer distance of 2.27 nm. Structural considerations indicated that the charge‐balancing HO? (CH2)11? COO? anions were accommodated in the interlayer region as a monofilm of partially interdigitated alkyl chains in a trans planar conformation and bearing the alcoholic group. The organically modified hydrotalcite was used to prepare novel composites based on poly(?‐caprolactone) (PCL) with different procedures: (1) solvent casting, (2) ring‐opening polymerization of ?‐caprolactone, and (3) blending of precursors consisting of a PCL intercalated oligomer with a high‐molecular‐weight PCL. Microcomposites were obtained by the solvent casting of a mixture of a high‐molecular‐weight PCL and the modified hydrotalcite. The ring‐opening polymerization of ?‐caprolactone initiated by the ? OH groups of the alkyl chains intercalated in the hydrotalcite led to hybrid materials in which a low‐molecular‐weight PCL was in part intercalated into the modified hydrotalcite. Nanocomposites containing exfoliated hydrotalcite were obtained through the mixing, in different weight ratios, of hybrids consisting of PCL oligomers and modified hydrotalcite with a commercial high‐molecular‐weight PCL. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2281–2290, 2005  相似文献   

18.
Poly(ε‐caprolactone) (PCL) with a pendent coumarin group was prepared by solution polycondensation from 7‐(3,5‐dicarboxyphenyl) carbonylmethoxycoumarin dichloride and α, ω‐dihydroxy terminated poly(ε‐caprolactone) with molecular weights of 1250, 3000, and 10,000 g/mol. These photosensitive polymers underwent a rapid reversible photocrosslinking upon exposure to irradiation with alternating wavelengths (>280/254 nm) without a photoinitiator. The thermal and mechanical properties of the photocrosslinked films were examined by means of differential scanning calorimetry and stress–strain measurements. The crosslinked films exhibited elastic properties above the melting temperature of the PCL segment along with significant decrease in the ultimate tensile strength and Young's modulus. Shape‐memory properties such as strain fixity ratio (Rf) and strain recovery ratio (Rr) were determined by means of a cyclic thermomechanical tensile experiments under varying maximum strains (εm = 100, 300, and 500%). The crosslinked ICM/PCL‐3000 and ‐10,000 films exhibited the excellent shape‐memory properties in which both Rf and Rr values were 88–100% for tensile strain of 100–500%; after the deformation, the films recovered their permanent shapes instantaneously. In vitro degradation was performed in a phosphate buffer saline (pH 7.2) at 37 °C with or without the presence of Pseudomonas cepacia lipase. The presence of the pendent coumarin group and the crosslinking of the polymers pronouncedly decreased the degradation rate. The crosslinked biodegradable PCL showing a good shape‐memory property is promising as a new material for biomedical applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2422–2433, 2009  相似文献   

19.
Amphiphilic di‐ and tri‐block copolymers based on poly(ethylene oxide) as a hydrophilic segment and poly(ε‐caprolactone) as a hydrophobic part are synthesized by the ring‐opening polymerization of ε‐caprolactone while using poly(ethylene glycol)s and methoxy poly(ethylene glycol)s of varying molar masses as macro‐initiators. The synthesized block copolymers are characterized with respect to their total relative molar mass and its distribution by size exclusion chromatography. Liquid chromatography at critical conditions of both blocks is established for the analysis of individual block lengths and tracking presence of unwanted homopolymers of both types in the block copolymer samples. New critical conditions of polycaprolactone on reversed phase column are reported using organic mobile phase. The established critical conditions of polycaprolactone extended the applicable molar mass range significantly compared to already reported critical conditions of polycaprolactone in aqueous mobile phase. Block copolymers are also analyzed at critical conditions of poly(ethylene glycol). Complete analysis of the di‐ and tri‐block copolymers at corresponding critical conditions provided a fair estimate of molar mass of non‐critical block besides information regarding presence of homopolymers of both types in the samples.  相似文献   

20.
Chitosan‐graft‐poly(ϵ‐caprolactone) was prepared via the ring‐opening graft polymerization of ϵ‐caprolactone (CL) through chitosan with 4‐dimethylaminopyridine as a catalyst and water as a swelling agent. The graft content of PCL within the graft copolymer was adjusted by the feed ratio of CL to chitosan, and the highest grafting concentration of PCL was up to about 400%. Fourier transform infrared, 1H NMR, and two‐dimensional heteronuclear single quantum coherence analyses indicated that the amino group (NH2 CH‐2) of chitosan initiated the graft polymerization of CL through the backbone of chitosan, and the hydroxyl group (HO CH2–6) of chitosan did not participate in initiating the graft polymerization. The percentage of amino groups initiating the graft polymerization decreased with an increasing molar ratio of CL to chitosan in the feed, and this was attributed to the fact that the graft polymerization system increasingly became heterogeneous with an increasing feed ratio of CL to chitosan. The physical properties of the graft copolymers were characterized by thermogravimetric analysis and wide‐angle X‐ray diffraction, respectively. These suggested that the introduction of PCL grafts through the chitosan backbone would to some extent destroy the crystalline structure of chitosan, and the PCL grafts existed in an amorphous structure. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5353–5361, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号