首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low‐molecular‐weight organic additives such as stearic acid are commonly used as surface additives in powder injection moulding (PIM). It is therefore important to know how the additives interact with the surface of the powder used. In this study, such interactions are studied by means of controlled adsorption of carboxylic acids on the oxides of interest. The oxides are prepared by oxidation of flat samples of Fe, Cr, Mn and Si. Surface chemical characterization is done by means of XPS, the main approach on flat samples being a comparison of angle‐resolved analysis and the use of the Tougaard nanostructure analysis technique. Taking advantage of this comparison, the Tougaard method is then applied in the evaluation of XPS analyses of stainless‐steel powder with adsorbed stearic acid. In addition, time‐of‐flight SIMS analysis is used to verify the adsorption of stearic acid on the powder surface. It is shown that Tougaard nanostructure analysis can be used for determining the thickness of an organic layer on particulate material. The layer thickness of adsorbed stearic acid was estimated to be ~20 Å, corresponding to monolayer adsorption. Time‐of‐flight SIMS analysis verified the adsorption of stearic acid on the powder surface. From the XPS analysis of flat samples it was determined that the use of the metal/oxide universal cross‐section in Tougaard nanostructure analysis best described the increased background due to adsorption of carboxylic acids, and that information about molecular orientation could be gained. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Static secondary ion mass spectrometry was used to study the surface reactions and lateral distributions of fatty carboxylic acid molecules on sputter‐deposited gold and aluminium surfaces, as well as commercial aluminium–magnesium alloy surfaces, cleaned using UV/ozone. Films were prepared by spin coating dilute solutions of stearic acid and lauric acid onto the above surfaces. These carboxylic acids were shown to react with the oxide formed on the aluminium and aluminum–magnesium alloy substrates to produce a deprotonated acid anion, stabilized by the formation of a magnesium soap on the aluminium–magnesium alloy surface. Secondary ion imaging of stearic acid films revealed the formation of C‐type crystals. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Tailoring of oxide chemistry on aluminum by means of low-pressure water and argon plasma surface modification was performed to influence the kinetics of the self-assembly process of octadecylphosphonic acid monolayers. The plasma-induced surface chemistry was studied by in situ FTIR reflection-absorption spectroscopy (IRRAS). Ex situ IRRAS and X-ray photoelectron spectroscopy were applied for the analysis of the adsorbed self-assembled monolayers. The plasma-induced variation of the hydroxide to oxide ratio led to different adsorption kinetics of the phosphonic acid from dilute ethanol solutions as measured by means of a quartz crystal microbalance. Water plasma treatment caused a significant increase in the density of surface hydroxyl groups in comparison to that of the argon-plasma-treated surface. The hydroxyl-rich surface led to significantly accelerated adsorption kinetics of the phosphonic acid with a time of monolayer formation of less than 1 min. On the contrary, decreasing the surface hydroxyl density slowed the adsorption kinetics.  相似文献   

4.
Development of coatings to minimize unwanted surface adsorption is extremely important for their use in applications, such as sensors and medical implants. Self-assembled monolayers (SAMs) are an excellent choice for coatings that minimize nonspecific adsorption because they can be uniform and have a very high surface coverage. Another equally important characteristic of such coatings is their stability. In the present study, both the bonding mechanism and the stability of stearic acid SAMs on two aluminum oxides (single-crystal C-plane aluminum oxide (sapphire) and amorphous aluminum oxide (alumina)) are investigated. The adsorption mechanism is investigated by ex situ X-ray photoelectron spectroscopy and infrared (IR) spectroscopy. The results revealed that stearic acid binds to sapphire surfaces via a bidentate interaction of carboxylate with two oxygen atoms while it binds to alumina surfaces via both bidentate and monodentate interactions. Desorption kinetics of stearic acid self-organized on both aluminum oxide surfaces into water is explored by ex situ tapping mode atomic force microscopy, IR spectroscopy, and contact angle measurements. The results exhibit that the SAMs of stearic acid formed on sapphire are not stable in water and are continuously lost through desorption. Water contact angle measurements of SAMs that are immersed in water further indicate that the desorption rate of adsorbates from atomically smooth terrace sites is substantially faster than that of adsorbates from the sites of surface defects due to weaker molecular interaction with the smooth surface. A time-dependent desorption profile of SAMs grown on amorphous alumina reveals that contact angles decrease monotonically without any regional distinction, providing further evidence for the presence of adsorption sites with different types of affinity on the amorphous alumina surface.  相似文献   

5.
Organosilane self‐assembled monolayers (SAMs) are commonly used for modifying a wide range of substrates. Depending on the end group, highly hydrophobic or hydrophilic surfaces can be achieved. Silanization bases on the adsorption, self‐assembly and covalent binding of silane molecules onto surfaces and results in a densely packed, SAM. Following wet chemical routines, the quality of the monolayer is often variable and, therefore, unsatisfactory. The process of self‐assembly is not only affected by the chemicals involved and their purity but is also extremely sensitive to ambient parameters such as humidity or temperature and to contaminants. Here, a reliable and efficient wet‐chemical recipe is presented for the preparation of ultra‐smooth, highly ordered alkyl‐terminated silane SAMs on Si wafers. The resulting surfaces are characterized by means of atomic force microscopy, X‐ray reflectometry and contact angle measurements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Barrier‐type anodic films 3–15 nm thick have been formed on electropolished 99.999% aluminium. Variable‐angle XPS has been used to identify a significant proportion of hydroxyl ions at the surface of the relatively compact alumina films. The location of an oxygen‐rich region at the outer surface of the oxide has been confirmed by medium‐energy ion scattering (MEIS). Combining the information from these two techniques leads to the conclusion that a hydroxyl‐containing surface region is responsible for this oxygen‐rich surface layer, MEIS revealing an approximately linear relationship between the total oxide thickness and the thickness of the hydroxyl‐rich surface region. From consideration of the mechanisms of amorphous alumina formation by ionic transport, with incorporation of electrolyte‐derived species into the thickening film, the generation of the hydroxyl‐rich outermost region is considered to result from the formation of gel‐like material at the film/electrolyte interface. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
A fluorescence probe, fluorescein isothiocyanate (FITC), was introduced to proteins, and the morphology of protein-adsorbed stearic acid monolayer was observed by fluorescence microscopy and Brewster angle microscopy (BAM) in order to analyze images. At a low protein concentration, the surface pressure increased as shown by a sigmoidal curve. A number of stripe patterns in the BAM images increased and the shapes became clear with increasing concentration of proteins. Simultaneously, the size of circular islands also became small, and finally disappeared. These results suggest that the very large stripe patterns in the BAM image show the assembly of both proteins and stearic acid molecules, and small circular islands show only the stearic acid molecules. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
Inelastic electron tunnelling spectroscopy (IETS) has been applied to study the adsorption of a series of aminophenols on plasma-grown aluminium and magnesium oxides. Vapour-phase doping of these surfaces was used and spectra recorded for 1,2-aminophenol, 1,3-aminophenol and 1,4-aminophenol. The tunnel spectra of the 1,2- and 1,3-aminophenols show that their chemisorption at both oxide surfaces is via reaction between phenolic and surface hydroxyl groups. For the 1,4-aminophenol example, adsorbate chemisorption involves transfer of surface-bound protons from the oxide in amino-group protonation. Some of these protons are replaced by deprotonation of the phenol at surface oxide ions. Observed band intensities for all three systems on aluminium oxide are held to be indicative of an adsorbate orientation on the surface which is close to the vertical. In contrast, those for magnesium oxide are more consistent with a non-vertical configuration.  相似文献   

9.
The adsorption of a range of organic molecules from toluene onto the oxidized surface of magnetron‐sputtered aluminium metal is studied using sessile drop water contact angle measurements. Molecules with different head group functionalities and various chain lengths are considered, including alkyl carboxylic acids, alkyl phosphonic acids, alkyl amines, alkyl trimethoxysilanes, alkyl trichlorosilanes and epoxy alkanes. Alkyl phosphonic and carboxylic acids are identified as readily forming the most well‐packed monolayers on the aluminium surface, whereas the others adsorb less well and the chlorosilanes polymerize as a result of combination with moisture to form a thick deposit. The high‐adsorption‐density monolayers of alkyl phosphonic and carboxylic acids were studied using polarization modulation infrared reflection–absorption spectroscopy (PM‐IRRAS) and x‐ray photoelectron spectroscopy (XPS): PM‐IRRAS reveals relatively poorer ordering of the C10 alkyl carboxylic acid monolayer compared with that formed from the phosphonic acid, and XPS data suggest that this is likely to relate to a lower ability to displace preadsorbed volatile organic compounds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Duringthelasttwodecades ,peoplehavepaidmuchinterestinthechemistryofself assembledmonolayers(SAMs) ,whichshowspowerfulapplicationsinthefieldsofbiosensorsandtailoredsurfaces .Particularly ,twotypesofSAMs ,i.e .,thiols/thiolatesongoldandsilanesonsiliceoussurface…  相似文献   

11.
Model surfaces representative of chromatographic stationary phases were developed by immobilising an homologous series (C2-C18) of n-alkylthiols, mixed monolayers of C4/C18 and thioalkanes with alcohol, carboxylic acid, amino and sulphonic acid terminal groups onto a flat, silver-coated glass surface using self-assembled monolayer (SAM) chemistry. The processes of adsorption and desorption of serum albumins onto the monolayer surfaces was monitored in real-time using surface plasmon resonance (SPR). Alkyl-terminated SAMs all showed a strong adsorption of bovine serum albumin which was largely independent of alkyl chain length, the ratio of mixed C4/C18 SAMs or the solution pH/ionic strength. The adsorption of human serum albumin to carboxylic and amine terminated SAMs was shown to be predominantly via non-electrostatic interactions (hydrophobic or hydrogen bonding). However, sulphonic acid terminated SAMs showed almost exclusively electrostatic interactions with human serum albumin. This preliminary work using self-assembled monolayer chemistry confirms the usefulness of well characterised SAMs surfaces for investigating protein adsorption and desorption onto/from model chromatography surfaces and gives some guidance for selecting appropriate functionalities to develop better surfaces for chromatography and electrophoresis.  相似文献   

12.
Inelastic Electron Tunnelling Spectroscopy (IETs) has been applied to study the adsorption of 2,3-dihydroxynaphthalene, 1,2-dihydroxybenzene, 1,3-dihydroxybenzene and 1,4-dihydroxybenzene onto plasma-grown thin-film partially hydroxylated magnesium and aluminium oxides. For both 2,3-dihydroxynaphthalene and 1,2-dihydroxybenzene on aluminium oxide it is found that adsorbate chemisorption involves reaction of the two hydroxyl groups present in the adsorbate to form a di-anion in the case of the former and both the mono- and di-anion for the latter. The tunnel spectra for both compounds on magnesium oxide indicate that the di-anion is formed. Adsorption at the oxide surfaces for these two adsorbates involves adsorbate deprotonation with the formation, at the oxide surface, of molecular water which is subsequently desorbed and pumped away during sample junction preparation. For the 1,3- and 1,4-dihydroxy systems, on both oxides, the presence of a strong ν(OH) band at ≈3650 cm−1 suggests that only one of the hydroxyl groups present in both systems is involved in adsorbate deprotonation interactions at the respective oxide surfaces, with the second hydroxyl group present contributing to the enhanced substrate oxide ν(OH) envelope observed.  相似文献   

13.
A new method for assembling organic monolayers on gold is reported that employs hafnium ions as linkers between a phosphonate headgroup and the gold surface. Monolayers of octadecylphosphonic acid (ODPA) formed on gold substrates that had been pretreated with hafnium oxychloride are representative of this new class of organic thin films. The monolayers are dense enough to completely block assembly of alkanethiols and resist displacement by alkanethiols. The composition and structure of the monolayers were investigated by contact angle goniometry, XPS, PM-IRRAS, and TOF-SIMS. From these studies, it was determined that this assembly strategy leads to the formation of ODPA monolayers similar in quality to those typically formed on metal oxide substrates. The assembly method allows for the ready generation of patterned surfaces that can be easily prepared by first patterning hafnium on the gold surface followed by alkanephosphonate assembly. Using the bifunctional (thiol-phosphonate) 2-mercaptoethylphosphonic acid (2-MEPA), we show that this new assembly chemistry is compatible with gold-thiol chemistry and use TOF-SIMS to show that the molecule attaches through the phosphonate functionality in the patterned region and through the thiol in the bare gold regions. These results demonstrate the possibility of functionalizing metal substrates with monolayers typically formed on metal oxide surfaces and show that hafnium-gold chemistry is complementary and orthogonal to well-established gold-thiol assembly strategies.  相似文献   

14.
The self‐assembling behavior of 1‐tetradecylphosphonic acid (TDPA) molecules on the surfaces of 2024 aluminum alloys was studied with an emphasis on the different micro‐structural regions of the alloy surface, specially the alloy matrix and the two main types of intermetallic particles, as well as how the adsorption was effected by changes in water content of the self‐assembly solution. Surface characterization was undertaken with contact angle measurement, scanning electron microscopy and Auger electron spectroscopy (AES). The packing density of TDPA film on the alloy surface increased with the increasing water content of the self‐assembly solution. It seemed that the micro‐distribution of TDPA molecules was related to copper amount and the region with a higher surface copper concentration had a lower packing density of TDPA. Some pits were formed in the acidic self‐assembly solutions and the exposed surfaces of the pits can quickly adsorb TDPA molecules with compactness comparative to the matrix surface. Different adsorption models of TDPA corresponding to different water content of the self‐assembly solution were suggested based on the analysis of AES depth sputtering data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Surface functionalization via 1 H,1 H,2 H,2H‐perfluoro octanephosphonic acid was done in the presence of phosphoric acid to provide a simplified surface passivation technique for gallium nitride (GaN) and gallium phosphide (GaP). In an effort to identify the leading causes of surface instabilities, hydrogen peroxide was utilized as an additional chemical modification to cap unsatisfied bonds. The stability of the surfaces was studied in an aqueous environment and subsequently characterized. A physical characterization was carried out to evaluate the surface roughness and water hydrophobicity pre and post stability testing via atomic force microscopy and water goniometry. Surface‐chemistry changes and solution leaching were quantified by X‐ray photoelectron spectroscopy and inductively coupled plasma mass spectrometry. The results indicate a sensitivity to hydroxyl terminated species for both GaN and GaP under aqueous environments, as the increase of the degree of leaching was more significant for hydrogen peroxide treated samples. The results support the notion that hydroxyl species act as precursors to gallium oxide formation and lead to subsequent instability in aqueous solutions.  相似文献   

17.
The adsorption and self-organisation process of alkyl-phosphonic acids and phosphoric acid monoalkyl esters on technical aluminium surfaces have been investigated by different surface sensible techniques: Grazing angle FT-IR- spectroscopy, angle dependent XPS and Auger- spectroscopy. The aim of these studies was to replace the present technical procedure for pretreatment of aluminum surfaces with Chromate acid in order to improve the corrosion inhibition and the coating adhesion. The ability for self-assembly is given by substances which have a surface reactive group and a long-aliphatic or aromatic spacer and a supramolecular order is built-up between these spacers. The results show that these molecules are able to adsorb spontaneously onto the aluminum surface and subsequently a structured molecular order is formed. These effects were confirmed by industrial linked adhesion and corrosion tests.  相似文献   

18.
Silicon substrates coated with a long-chain hydrocarbon monolayer terminated by carboxylic acid ester groups were brought into molecular contact with different solid counter surfaces ranging from inert hydrocarbon surfaces to hydrophilic oxide surfaces. The interaction of the terminal ester groups with the counter surface was probed with infrared spectroscopy. Interfacial hydrogen bonds are reversibly formed upon contact formation, and the total degree of bonding can be adjusted by variation of the hydroxyl group density of the counter surface and quantified from the monolayer IR spectra.  相似文献   

19.
The growth of thin metal films is an important step in the fabrication of electronic and magnetic devices. In this work, an atomically flat graphite surface was used as a model system to understand the details of gold film growth mechanisms and kinetics. Ordered assembling monolayers of 1‐octadecanethiol and stearic acid are used to modify the surface and uniform, densely packed ultrathin gold film with the thickness less than 5 nm are formed on these monolayer‐modified graphite surfaces in a large area. The amount of gold needed to be deposited in order to form a continuous gold film is significantly reduced as compared to that needed on a bare graphite surface. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Carboxylic‐acid adsorption on anatase TiO2 is a relevant process in many technological applications. Yet, despite several decades of investigations, the acid‐proton localization—either on the molecule or on the surface—is still an open issue. By modeling the adsorption of formic acid on top of anatase(101) surfaces, we highlight the formation of a short strong hydrogen bond. In the 0 K limit, the acid‐proton behavior is ruled by quantum delocalization effects in a single potential well, while at ambient conditions, the proton undergoes a rapid classical shuttling in a shallow two‐well free‐energy profile. This picture, supported by agreement with available experiments, shows that the anatase surface acts like a protecting group for the carboxylic acid functionality. Such a new conceptual insight might help rationalize chemical processes involving carboxylic acids on oxide surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号