Ceric ammonium nitrate (CAN) is a single‐electron‐transfer reagent with unparalleled utility in organic synthesis, and has emerged as a vital feedstock in diverse chemical industries. Most applications use CAN in solution where it is assigned a monomeric [CeIV(NO3)6]2? structure; an assumption traced to half‐century old studies. Using synchrotron X‐rays and Raman spectroscopy we challenge this tradition, converging instead on an oxo‐bridged dinuclear complex, even in strong nitric acid. Thus, one equivalent of CAN is recast as a two‐electron‐transfer reagent and a redox‐activated superbase, raising questions regarding the origins of its reactivity with organic molecules and giving new fundamental insight into the stability of polynuclear complexes of tetravalent ions. 相似文献
We propose a theoretical explanation of the parallel and perpendicular lamellar orientations in free surface films of symmetric polystyrene‐block‐polybutadiene diblock copolymers on silicon substrates (with a native SiOx layer). Two approaches are developed: A correction to the strong segregation theory and a qualitative analysis of the intermediate segregation regime. We show that the perpendicular orientation of the lamellae formed by the molecules of high molecular weight is stabilized by A–B interfacial interactions. They are weaker in the case of the perpendicular orientation of the lamellae, whereas the surface tension coefficient of the A–B interface decreases with the increase of the molecular weight.
Soy protein isolate (SPI) and glycerol were mixed under mild (L series) and severe (H series) mixing conditions, respectively, and then were compression-molded at 140 degrees C and 20 MPa to prepare the sheets (SL and SH series). The glass transition behaviors and microstructures of the soy protein plasticized with glycerol were investigated carefully by using differential scanning calorimetry and small-angle X-ray scattering. The results revealed that there were two glass transitions in the SPI/glycerol systems. When the glycerol contents ranged from 25 to 40 wt.-%, all of the SL- and SH-series sheets showed two glass transition temperatures (T(g1) and T(g2)) corresponding to glycerol-rich and protein-rich domains, respectively. The T(g1) values of the sheets decreased from -28.5 to -65.2 degrees C with an increase of glycerol content from 25 to 50 wt.-%, whereas the T(g2) values were almost invariable at about 44 degrees C. The results from wide-angle X-ray diffraction and small-angle X-ray scattering indicated that both protein-rich and glycerol-rich domains existed as amorphous morphologies, and the radii of gyration (R(g)) of the protein-rich domains were around 60 nm, a result suggesting the existence of stable protein domains. The results above suggest that protein-rich domains were composed of the compact chains of protein with relatively low compatibility to glycerol and glycerol-rich domains consisted of relative loose chains that possessed good compatibility with glycerol. The significant microphase separation occurred in the SPI sheets containing more than 25 wt.-% glycerol, with a rapid decrease of the tensile strength and Young's modulus. [illustration in text]. 相似文献
The existence of attractive interaction between CMC and BSA was evidenced in solution at pH higher than the protein isoelectric point by means of SAXS. Mixtures of BSA at 10 x 10(-3) g . mL(-1) and CMC at the concentration range of 1 x 10(-3) g . mL(-1) to 10 x 10(-3) g . mL(-1) were investigated. Upturns in the very low q range revealed the presence of aggregates when the CMC concentration was higher than 2 x 10(-3) g . mL(-1). The comparison between the calculated form factor with the experimental curves at intermediate and long q values indicated that the BSA molecules keep their native form in mixtures with CMC concentrations lower than 5 x 10(-3) g . mL(-1). Therefore, for CMC concentrations higher than 2 x 10(-3) g . mL(-1) the mixtures start to present aggregates and free BSA molecules coexisting in solution. 相似文献
The metal vapor synthesis is used to prepare sols of nanoparticles (Cu, Ag, and Au) in various solvents (isopropanol, triethylamine, and acetone). The sols are then used to deposit metal nanoparticles onto chitosan. The successful introduction of metal into the chitosan matrix is confirmed with X‐ray spectroscopic and diffraction methods. The morphology and size distribution of metal particles in nanocomposite materials are characterized by transmission electron microscopy and small‐angle X‐ray scattering. 相似文献
Reproducible and controllable growth of nanostructures with well‐defined physical and chemical properties is a longstanding problem in nanoscience. A key step to address this issue is to understand their underlying growth mechanism, which is often entangled in the complexity of growth environments and obscured by rapid reaction speeds. Herein, we demonstrate that the evolution of size, surface morphology, and the optical properties of gold plasmonic nanostructures could be quantitatively intercepted by dynamic and stoichiometric control of the DNA‐mediated growth. By combining synchrotron‐based small‐angle X‐ray scattering (SAXS) with transmission electron microscopy (TEM), we reliably obtained quantitative structural parameters for these fine nanostructures that correlate well with their optical properties as identified by UV/Vis absorption and dark‐field scattering spectroscopy. Through this comprehensive study, we report a growth mechanism for gold plasmonic nanostructures, and the first semiquantitative revelation of the remarkable interplay between their morphology and unique plasmonic properties. 相似文献
The properties of many functional materials depend critically on the spatial distribution of an active phase within a support. In the case of solid catalysts, controlling the spatial distribution of metal (oxide) nanoparticles at the mesoscopic scale offers new strategies to tune their performance and enhance their lifetimes. However, such advanced control requires suitable characterization methods, which are currently scarce. Here, we show how the background in small‐angle X‐ray scattering patterns can be analyzed to quantitatively access the mesoscale distribution of nanoparticles within supports displaying hierarchical porosity. This is illustrated for copper catalysts supported on meso‐ and microporous silica displaying distinctly different metal distributions. Results derived from X‐ray scattering are in excellent agreement with electron tomography. Our strategy opens unprecedented prospects for understanding the properties and to guide the synthesis of a wide array of functional nanomaterials. 相似文献