首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major risk of using carbon nanotubes (CNTs) to modify proton exchange membranes (PEMs) in fuel cells is possible short‐circuiting due to the excellent electrical conductivity of CNTs. In this article, silica‐coated CNTs (SiO2@CNTs) were successfully prepared by a simple sol–gel process and then used as a new additive in the preparation of sulfonated poly (ether ether ketone) (SPEEK)‐based composite membranes. The insulated and hydrophilic silica coated on the surface of CNTs not only eliminated the risk of short‐circuiting, but also enhanced the interfacial interaction between CNTs and SPEEK, and hence promoted the homogeneous dispersion of CNTs in the SPEEK matrix. Moreover, compared to the methanol permeability of the pure SPEEK membrane (3.42 × 10?7 cm2 s?1), the SPEEK/SiO2@CNT composite membrane with a SiO2@CNT loading of 5 wt% exhibits almost one order of magnitude decrease of methanol crossover, while the proton conductivity still remained above 10?2 S cm?1 at room temperature. The obtained results expose the possibility of SPEEK/SiO2@CNT membranes to be served as high‐performance PEMs in direct methanol fuel cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A series of sulfonated poly(ether ether ketone)/monoethanolamine/adipic acid (SPEEK/MEA/AA) composite membranes are prepared and investigated to assess their possibility as proton exchange membranes in direct methanol fuel cells (DMFCs). A preliminary evaluation shows that introducing MEA and AA into SPEEK matrix decreases the thermal stability of membrane. However, the degradation temperatures are still above 260 °C, satisfying the requirement for fuel cell operation. Compared with the pure SPEEK membrane, the composite membranes exhibit not only lower water uptake and swelling ratios but also better mechanical property and oxidative stability. Noticeably, the methanol diffusion coefficient of the composite membranes decrease significantly from 3.15 × 10?6 to 0.76 × 10?6 cm2/s with increasing MEA and AA content, accompanied by only a small sacrifice in proton conductivity. Although both the methanol diffusion coefficient and the proton conductivity of composite membranes are lower than those of pure SPEEK and Nafion® 117 membranes, their selectivity (conductivity/methanol diffusion coefficient) are higher. In addition, the composite membranes show excellent stability in aqueous methanol solution. The good thermal and chemical stability, low swelling ratio, excellent mechanical property, low methanol diffusion coefficient, and high selectivity make the use of these composite membranes in DMFCs quite attractive. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2871–2879, 2007  相似文献   

3.
The distribution of ZrO2 and phosphotungstic acid (PTA) in a matrix of sulfonated polyether ketone was investigated by anomalous small‐angle X‐ray scattering (ASAXS). Scattering curves were obtained using X‐ray energies near the Zr and W absorption edges, allowing the independent analysis of the distribution of ZrO2 and PTA in the sample. The interaction between both inorganic components improved their dispersion considerably when compared with films containing just one of the additives. The synergism was correlated to previous investigations concerning proton conductivity and permeability of the membranes developed for direct methanol fuel cell. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2981–2992, 2005  相似文献   

4.
A series of soluble, benzimidazole‐based polymers containing sulfonic acid groups (SuPBI) has been synthesized. SuPBI membranes resist extensive swelling in water but are poor proton conductors. When blended with high ion exchange capacity (IEC) sulfonated poly(ether ether ketone) (SPEEK), a polymer that has high proton conductivity but poor mechanical integrity, ionic crosslinks form reducing the extent of swelling. The effect of sulfonation of PBI on crosslinking in these blends was gauged through comparison with nonsulfonated analogs. Sulfonic acid groups present in SuPBI compensate for acid groups involved in crosslinking, thereby increasing IEC and proton conductivity of the membrane. When water uptake and proton conductivity were compared to the IEC of blends containing either sulfonated or nonsulfonated PBI, no noticeable distinction between PBI types could be made. Comparisons were also made between these blends and pure SPEEK membranes of similar IEC. Blend membranes exhibit slightly lower maximum proton conductivity than pure SPEEK membranes (60 vs. 75 mS cm?1) but had significantly enhanced dimensional stability upon immersion in water, especially at elevated temperature (80 °C). Elevated temperature measurements in humid environments show increased proton conductivity of the SuPBI membranes when compared with SPEEK‐only membranes of similar IEC (c.f. 55 for the blend vs. 42 mS cm?1 for SPEEK at 80 °C, 90% relative humidity). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3640–3650, 2010  相似文献   

5.
Acid–base polymer blends for polymer electrolyte membranes have been prepared by blending sulfonated poly(ether ether ketone) (SPEEK) with poly(vinylpyrrolidone) (PVP) to reduce methanol uptake and to decrease methanol permeability while maintaining high proton conductivity. The acid‐base interaction occurring on the sulfonic acid group and on the tertiary amide group was characterized by FTIR and DMA. As the composition of PVP lowered than 20 wt % in the blends, the acid–base interaction causes great reduction on methanol uptake and the methanol permeability; however, the proton conductivity is still high. In this work, membrane–electrode assemblies (MEAs) have been prepared for direct methanol fuel cell (DMFC) from both blend membrane and Nafion 117. DMFC single cell performance was also evaluated. Results confirmed that SPEEK (with the degree of sulfonation (DS) = 69%) blended with PVP (Mn = 1,300,000) with a ratio of 80/20 (w/w) exhibits higher open‐circuit voltages (OCV) and lower polarization loss than those of Nafion 117. These acid–base blends will be suitable for DMFC application. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 565–572, 2006  相似文献   

6.
Seven different fluoropolymer films were used as matrix materials for radiation‐grafted ion‐exchange membranes. The crystallinity and preferred orientation of these membranes were studied with wide‐angle X‐ray scattering, and the lamellar structure of the membranes was examined with small‐angle X‐ray scattering. The crystallinity of poly(vinylidene fluoride) (PVDF)‐based matrix materials varied between 57 and 40%, and the crystallinity of the sulfonated samples varied between 34 and 23%. The lamellar periods of PVDF‐based matrix materials were about 115 Å, and the lamellar periods of poly(ethylene‐alt‐tetrafluoroethylene) and poly(tetrafluoroethylene‐co‐hexafluoropropylene) were 250 and 212 Å, respectively. When the samples were grafted, the lamellar periods increased. Correlation function analysis showed very clearly that the long‐range order decreased because of grafting and sulfonation processes. For those samples that showed good proton conductivity, the lamellar period also increased because of sulfonation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1539–1555, 2002  相似文献   

7.
Hydrophobic‐hydrophilic sequence multiblock copolymers, based on alternating segments of phenoxide terminated fully disulfonated poly(arylene ether sulfone) (BPS100) and fluorine‐terminated poly(arylene ether sulfone) (6FBPS0) were synthesized and evaluated for application as proton exchange membranes. By utilizing mild reaction conditions the ether–ether interchange reactions were minimized, preventing the randomization of the multiblock copolymers. Tough, ductile, transparent membranes were solution cast from the block copolymers and were characterized with regard to intrinsic viscosity, morphology, water uptake, and proton conductivity. The conductivity values of the 6FBPS0‐BPSH100 membranes were compared to Nafion 212 and a partially fluorinated sulfonated poly(arylene ether sulfone) random copolymer (6F40BP60). The nanophase separated morphology was confirmed by transmission electron microscopy and small angle X‐ray scattering, and enhanced proton conductivity at reduced relative humidity was observed with longer block lengths. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
The influence of blending with polyetherimide (PEI) and doping with HCl and H3PO4 on the properties of sulfonated polyether ether ketone (SPEEK) was studied. Blending with PEI first results in an increase and then in a decrease in membrane swelling at PEI concentrations greater than 5%. The electrical conductivity of blend membranes follows the same trend. Doping with the acids enhances the conductivity several times, and the effect of doping with HCl is more significant. PEI forms spherical particles dispersed in the SPEEK matrix and, at the same time, partially dissolves in SPEEK, which reduces the swelling of the matrix at higher PEI concentrations. The increase in the membrane capacity to absorb water at small PEI contents is due to the formation of new water adsorption sites along the interface between the particles and the matrix. A modified effective medium model yielded calculated results in good agreement with the measured conductivity values, when the experimental absorption data were used in the simulation. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1386–1395, 2000  相似文献   

9.
A concept of preparing high‐temperature proton exchange membranes with layer‐by‐layer (LBL) self‐assembly technique was proposed and the sulfonated polyetheretherketone (SPEEK) and polyurethane (PU) with 200 LBL deposition cycles denoting (SPEEK/PU)200 membrane was prepared in this research. Owing to the strong electrostatic interaction between ? group in SPEEK and ? C? N+ group in PU, (SPEEK/PU)200 membrane with LBL self‐assembly structure showed a favorable structural stability. The phosphoric acid (PA)‐doped (SPEEK/PU)200 membrane showed a higher proton conductivity relative to PA doped SPEEK/PU membrane by solution casting method (SPEEK/PU)200/40%PA membrane possessed a proton conductivity value of 2.90 × 10?2 S/cm at 150 °C under anhydrous conditions. The LBL self‐assembly structure provided a possibility to reduce the negative effect from polymer skeleton blocking charge carrier species even immobilizing protons. Moreover, the (SPEEK/PU)200 membrane presented the particularly noteworthy mechanical property even with PA doping. The tensile stress values at break were 72.8 and 24.1 MPa, respectively, for (SPEEK/PU)200 and (SPEEK/PU)200/40%PA membrane at room temperature, which were obviously higher than the reported values of 15.9 and 2.81 MPa for SPEEK/PU and SPEEK/PU/60%PA membrane. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3446–3454  相似文献   

10.
The catalytic effects of 1,5,7‐Triazabicyclo[4.4.0]dec‐5‐ene (TBD) with 2‐methylimidazole‐intercalated α‐zirconium phosphate (α‐ZrP?2MIm) in the reaction of glycidyl phenyl ether (GPE) and hexahydro‐4‐methylphthalic anhydride (MHHPA) were investigated. The reaction did not proceed within 1 h at 60 °C. On increasing the temperature to 100 °C, the conversion reached 93% for 1 h. Without the addition of TBD, the conversion was 67% at 100 °C for 1 h. Under storage conditions at 25 °C for 7 days, the conversion of GPE was only 18%. The curing behavior of 2,2‐bis(4‐glycidyloxyphenyl)propane (DGEBA) and MHHPA in the presence of TBD with α‐ZrP?2MIm was evaluated by differential scanning calorimetry. The addition of TBD with α‐ZrP?2MIm as a latent thermal initiator, the storage stability was maintained and the reaction proceeded rapidly under heating conditions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2557–2561  相似文献   

11.
The thermal conductivity and thermal diffusivity of oil‐palm‐fiber‐reinforced untreated (Sample 1) and differently treated composites were measured with the transient plane source technique at room temperature and under normal pressure. All the composites were 40% oil‐palm fiber by weight. The fibers were treated with alkali (Composite 2), silane (Composite 3), and acetic acid (Composite 4) and reinforced in a phenolformaldehyde matrix. The thermal conductivity and thermal diffusivity of the composites increased after treatment to different extents. The thermal conductivity of the treated fibers as well as of the untreated fibers was calculated theoretically. The model results show that the thermal conductivity of the untreated fiber was smaller than the thermal conductivity of the treated fibers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 916–921, 2000  相似文献   

12.
Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy‐polyethyleneglycol‐monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid‐state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13C{1H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton‐phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The sulfonated poly(ether ether ketone sulfone) (SPEEKS)/heteropolyacid (HPA) composite membranes with different HPA content in SPEEKS copolymers matrix with different degree of sulfonation (DS) were investigated for high temperature proton exchange membrane fuel cells. Composite membranes were characterized by Fourier transfer infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR band shifts suggested that the sulfonic acid groups on the copolymer backbone strongly interact with HPA particles. SEM pictures showed that the HPA particles were uniformly distributed throughout the SPEEKS membranes matrix and particle sizes decreased with the increment of copolymers' DS. The holes were not found in SPEEKS‐4/HPA30 (consisting of 70% SPEEKS copolymers with DS = 0.8 and 30% HPA) composite membrane after composite membranes were treated with boiling water for 24 h. Thermal stabilities of the composite membranes were better than those of pure sulfonated copolymers membranes. Although the composite membranes possessed lower water uptake, it exhibited higher proton conductivity for SPEEKS‐4/HPA30 especially at high temperature (above 100 °C). Its proton conductivity linearly increased from 0.068 S/cm at 25 °C to 0.095 S/cm at 120 °C, which was higher than 0.06 S/cm of Nafion 117. In contrast, proton conductivity of pure SPEEKS‐4 membrane only increased from 0.062 S/cm at 25 °C to 0.078 S/cm at 80 °C. At 120 °C, proton conductivity decreased to poor 0.073 S/cm. The result indicated that composite membranes exhibited high proton conductivity at high temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1967–1978, 2006  相似文献   

14.
The tensile stress–strain behavior of Nafion 117 and sulfonated poly(arylene ether sulfone) copolymer (BPSH35) membranes were explored with respect to the effects of the strain rate, counterion type, molecular weight, and presence of inorganic fillers. The yielding properties of the two films were most affected by the change in the strain rate. The stress–strain curves of Nafion films in acid and salt forms exhibited larger deviations at strains above the yield strain. As the molecular weight of the BPSH35 samples increased, the elongation at break improved significantly. Enhanced mechanical properties were observed for the composite membrane of BPSH35 and zirconium phenylphosphonate (2% w/w) in comparison with its matrix BPSH35 film. The stress‐relaxation behavior of Nafion and BPSH35 membranes was measured at different strain levels and different strain rates. Master curves were constructed in terms of plots of the stress‐relaxation modulus and time on a double‐logarithm scale. A three‐dimensional bundle‐cluster model was proposed to interpret these observations, combining the concepts of elongated polymer aggregates, proton‐conduction channels, and states of water. The rationale focused on the polymer bundle rotation/interphase chain readjustment before yielding and polymer aggregate disentanglements and reorientation after yielding. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1453–1465, 2006  相似文献   

15.
A series of sterically‐encumbered, sulfonated, poly(arylene ether) copolymers were synthesized and their proton conductivity examined. The series was prepared by copolymerizing a novel monomer, 2″,3″,5″,6″‐tetraphenyl‐[1,1′:4',1″:4″,1″':4″',1″″‐quinquephenyl]‐4,4″″‐diol, with 4,4'‐difluorobenzophenone and bisphenol A. Subsequent sulfonation and solution casting provided membranes possessing ion exchange capacities of 1.9 to 2.7 mmol/g and excellent mechanical properties (Young's modulus, 0.2–1.2 GPa; tensile strength, 35–70 MPa; elongation at break, 62–231%). Water uptake ranged from 34 to 98 wt% at 80 °C/100% RH. Proton conductivities ranged between 0.24 to 16 mS/cm at 80 °C/60% RH, and 3 to 167 mS/cm at 80 °C/95% RH. TEM analysis of the polymers, in the dehydrated state, revealed isolated spherical aggregates of ions, which presumably coalesce when hydrated to provide highly conductive pathways. The strategy of using highly‐encumbered polymer frameworks for the design of mechanically‐robust and dimensionally‐stable proton conducting membranes is demonstrated. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2579‐2587  相似文献   

16.
In this work, we prepared amino-modified halloysite nanotubes (PEI-DHNTs) via the co-deposition of self-polymerized dopamine and polyethylenimine (PEI) on the surface of nanotubes, which was confirmed by X-ray photoelectron spectroscopy (XPS) and Thermogravimetric analysis (TGA). A series of composite proton exchange membranes (PEMs) were prepared by incorporating PEI-DHNTs and phosphotungstic acid (HPW) into sulfonated poly(ether ether ketone) (SPEEK). It was found that both PEI-DHNTs and HPW were well dispersed in the polymer matrix, exhibiting excellent filler-matrix compatibility. The composite membranes demonstrated enhanced proton conductivity, reaching as high as 0.078 S cm−1 with 33.3 wt.% HPW loading, which was ~90% higher than that of SPEEK control membrane. Such improvement was mainly attributed to the strong acid–base pairs formed by PEI-DHNT with both SPEEK and HPW, which shortened proton hopping distance and created more continuous proton conduction pathways. Furthermore, the membrane conductivity remained almost constant after 1 year's immersion in liquid water, indicating the successful immobilization of HPW in the composite membranes.  相似文献   

17.
Polymer electrolyte membranes are prepared from novel semi-interpenetrating polymer network material where the sulfonated poly (ether ether ketone) (SPEEK) is the linear polymer and the poly (ethylene glycol) diacrylate (PEGDA) is the cross-linking constituent. The semi-IPN is prepared by in situ polymerization of PEGDA in the presence of sulfonated poly (ether ether ketone). SPEEK is prepared by direct sulfonation of commercial PEEK (Gatone? 1100) by reported procedures. SPEEK with degree of sulfonation 63% (calculated from FT-NMR) is selected as the base membrane and different semi-IPN membranes were prepared by varying the PEGDA and SPEEK ratio. The degree of sulfonation of SPEEK and the formation of semi-IPN were confirmed by spectroscopy studies. The various semi-IPN membranes were characterized for ion-exchange capacity, water uptake, hydrolytic stability, proton conductivity and thermal stability for evaluating the suitability of these membranes for fuel cells. The proton conductivity of the membranes decreased with increasing PEGDA content. The Semi-IPN membranes exhibited conductivities (30°C) from 0.018 S/cm to 0.006 S/cm. These interpenetrating network membranes showed higher hydrolytic stability than the pure SPEEK membrane. This study shows that semi-IPN membranes based on PEGDA and SPEEK can be viable candidates for electrolyte membranes.  相似文献   

18.
Proton transport is one of crucial phenomena in electrolytic part highly considered to overcome a limit in fuel cell efficiency improvement. Proton conducting organic electrolyte was modeled and simulated at atomistic level of calculation by doping of butyl urocanate (C4U), a composite material with imidazole substructure, with sulfonated poly(ether ether ketone) (SPEEK) amorphous membrane at various working temperature. Molecular dynamics simulations were used to investigate structural and dynamics characteristic of C4U in the membrane comparing with the SPEEK-hydronium membrane model as a control. From simulations, thermal effect on water and proton carriers cluster surrounding the sulfonate groups was explored. At higher temperature, the more transport dynamics of C4U ions in SPEEK membranes were found than that of hydronium ions in the control system. Likewise, phase separation of hydrophobic and hydrophilic parts was taken into consideration here. A critical role of the enhancing proton conductivity by increasing the diffusion coefficient at temperature beyond C4U melting point in composite polymer membrane was emphasized. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1625–1635  相似文献   

19.
The effect of crosslinks introduced by ion irradiation with 11.7 MeV proton and 30 MeV helium ions on the reactivity of poly(ether‐ether‐ketone) (PEEK) to sulfonation have been investigated following the kinetics of the reaction at room temperature. Concentrated sulfuric acid was used as a swelling and sulfonating agent and the reaction was followed by changes in the FTIR spectrum. The rate of reaction decreased with the degree of crosslinking and the progress with time was consistent with diffusion control of the sulfuric acid into the crosslinked matrix. The results were consistent with the efficiency of the ions in crosslinking PEEK and in particular with the differences in their linear energy transfer (LET). © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 775–783, 2009  相似文献   

20.
Three kinds of sulfonated poly(ether ether ketone) (SPEEK)/nano oxide (Al2O3, SiO2, and TiO2) composite membranes are fabricated for vanadium redox flow battery (VRFB) application. The composite membranes with 5 wt% of Al2O3, SiO2, and TiO2 (S/A-5 %, S/S-5 %, and S/T-5 %) exhibit excellent cell performance in VRFB. Incorporation of nano oxides (Al2O3, SiO2, and TiO2) in SPEEK membrane improves in aspect of thermal, mechanical, and chemical stabilities due to the hydrogen bonds’ interaction between SPEEK matrix and nano oxides. The energy efficiencies (EEs) of composite membranes are higher than that of Nafion 117 membrane, owing to the good balance between proton conductivity and vanadium ion permeability. The discharge–capacity retentions of composite membranes also overwhelm that of Nafion 117 membrane after 200 cycles, indicating their good stability in VRFB system. These low-cost SPEEK/nano oxide composite membranes exhibit great potential for the application in VRFB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号