首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The radical copolymerization of maleimide (MI) and ethyl α‐propylacrylate was performed using 1,1,2,2‐tetraphenyl‐1,2‐bis(trimethylsilyloxy) ethane (TPSE) as initiator. The whole copolymerization process might be divided into two stages: in the first stage, the copolymerization was carried out on the common radical mechanism, the molecular weight of the copolymer increased rapidly in much lower conversion (< 85%), and did not depend on the polymerization time and conversion; in the second stage, molecular weight of the copolymer increased linearly with the conversion and the polymerization time. It was found, however, when the conversion was higher than a certain value, for example, more than 36%, the molecular weight of the copolymer was nearly unchangeable with the polymerization time and the molecular weight distribution was widened. The effect of reaction conditions on copolymerization was discussed and the reactivity ratios were calculated by the Kelen–Tudos method, the values were rMI = 0.13 ± 0.03, rEPA = 0.58 ± 0.06 for TPSE system and rMI = 0.12 ± 0.03, rEPA = 0.52 ± 0.06 for AIBN system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2872–2878, 2000  相似文献   

2.
The feasibility of the radical copolymerization of β‐pinene and acrylonitrile was clarified for the first time. The monomer reactivity ratios evaluated by the Fineman–Ross method were rβ‐pinene = 0 and racrylonitrile = 0.66 in dichloroethane at 60 °C with AIBN, which indicated that the copolymerization was a simple alternating copolymerization. The addition of the Lewis acid Et2AlCl increased the copolymerization rate and enhanced the incorporation of β‐pinene. The first example for the synthesis of an almost perfectly alternating copolymer of β‐pinene and acrylonitrile was achieved in the presence of Et2AlCl. Furthermore, the possible controlled copolymerization of β‐pinene and acrylonitrile was then attempted via the reversible addition–fragmentation transfer (RAFT) technique. At a low β‐pinene/acrylonitrile feed ratio of 10/90 or 25/75, the copolymerization with 2‐cyanopropyl‐2‐yl dithiobenzoate as the transfer agent displayed the typical features of living polymerization. However, the living character could be observed only within certain monomer conversions. At higher monomer conversions, the copolymerizations deviated from the living behavior, probably because of the competitive degradative chain transfer of β‐pinene. The β‐pinene/acrylonitrile copolymers with a high alternation degree and controlled molecular weight were also obtained by the combination of the RAFT agent cumyl dithiobenzoate and Lewis acid Et2AlCl. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2376–2387, 2006  相似文献   

3.
A well‐defined amphiphilic copolymer of ‐poly(ethylene oxide) (PEO) linked with comb‐shaped [poly(styrene‐co‐2‐hydeoxyethyl methacrylate)‐graft‐poly(ε‐caprolactone)] (PEO‐b‐P(St‐co‐HEMA)‐g‐PCL) was successfully synthesized by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with ring‐opening anionic polymerization and coordination–insertion ring‐opening polymerization (ROP). The α‐methoxy poly(ethylene oxide) (mPEO) with ω,3‐benzylsulfanylthiocarbonylsufanylpropionic acid (BSPA) end group (mPEO‐BSPA) was prepared by the reaction of mPEO with 3‐benzylsulfanylthiocarbonylsufanyl propionic acid chloride (BSPAC), and the reaction efficiency was close to 100%; then the mPEO‐BSPA was used as a macro‐RAFT agent for the copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) using 2,2‐azobisisobutyronitrile as initiator. The molecular weight of copolymer PEO‐b‐P(St‐co‐HEMA) increased with the monomer conversion, but the molecular weight distribution was a little wide. The influence of molecular weight of macro‐RAFT agent on the polymerization procedure was discussed. The ROP of ε‐caprolactone was then completed by initiation of hydroxyl groups of the PEO‐b‐P(St‐co‐HEMA) precursors in the presence of stannous octoate (Sn(Oct)2). Thus, the amphiphilic copolymer of linear PEO linked with comb‐like P(St‐co‐HEMA)‐g‐PCL was obtained. The final and intermediate products were characterized in detail by NMR, GPC, and UV. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 467–476, 2006  相似文献   

4.
The controlled free‐radical homopolymerization of ethyl α‐hydroxymethylacrylate and copolymerization with methyl methacrylate were performed in chlorobenzene at 70 °C by the reversible addition–fragmentation chain transfer polymerization technique with 2,2′‐azobisisobutyronitrile as the initiator. 2‐Phenylprop‐2‐yl dithiobenzoate and 2‐cyanoprop‐2‐yl dithiobenzoate were used as chain‐transfer agents in the homopolymerization, whereas only the former was used in the copolymerization. All reactions presented pseudolinear kinetics. The effect of the monomer feed ratio on the copolymerization kinetics was examined. The conversion level decreased when the proportion of ethyl α‐hydroxymethylacrylate in the monomer feed was larger. Kinetic studies indicated that the radical polymerizations proceeded with apparent living character according to experiments, demonstrating an increase in the molar mass with the monomer conversion and a relatively narrow molar mass distribution. All copolymers were statistical in chain structure, as confirmed by determinations of the monomer reactivity ratios. The monomer reactivity ratios were determined, and the Mayo–Lewis terminal model provided excellent predictions for the variations of the intermolecular structure over the entire conversion range. Additionally, the chemical modification of poly(ethyl α‐hydroxymethylacrylate) was carried out to introduce glucose pendant groups into the structure. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5618–5629, 2006  相似文献   

5.
A new graft copolymer, poly(2‐hydroxyethyl methacrylate‐co‐styrene) ‐graft‐poly(?‐caprolactone), was prepared by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with coordination‐insertion ring‐opening polymerization (ROP). The copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 60 °C in the presence of 2‐phenylprop‐2‐yl dithiobenzoate (PPDTB) using AIBN as initiator. The molecular weight of poly (2‐hydroxyethyl methacrylate‐co‐styrene) [poly(HEMA‐co‐St)] increased with the monomer conversion, and the molecular weight distribution was in the range of 1.09 ~ 1.39. The ring‐opening polymerization (ROP) of ?‐caprolactone was then initiated by the hydroxyl groups of the poly(HEMA‐co‐St) precursors in the presence of stannous octoate (Sn(Oct)2). GPC and 1H‐NMR data demonstrated the polymerization courses are under control, and nearly all hydroxyl groups took part in the initiation. The efficiency of grafting was very high. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5523–5529, 2004  相似文献   

6.
Poly(p‐nitrophenyl acrylate)s (PNPAs) with different molecular mass and narrow polydispersity were successfully synthesized for the first time by reversible addition–fragmentation transfer (RAFT) polymerization with azobisisobutyronitrile (AIBN) as an initiator and [1‐(ethoxy carbonyl) prop‐1‐yl dithiobenzoate] as the chain‐transfer agent. Although the molecular mass of PNPAs can be controlled by the molar ratio of NPA to RAFT agent and the conversion, a trace of homo‐PNPA was found, especially at the early stage of polymerization. The dithiobenzoyl‐terminated PNPA obtained was used as a macro chain‐transfer agent in the successive RAFT block copolymerization of styrene (St) with AIBN as the initiator. After purification by two washings with cyclohexane and nitromethane to remove homo‐PSt and homo‐PNPA, the pure diblock copolymers, PNPA‐b‐PSt's, with narrow molecular weight distribution were obtained. The structural analysis of polymerization products by 1H NMR and GPC verified the formation of diblock copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4862–4872, 2004  相似文献   

7.
Two new ring opening polymerization (ROP) initiators, namely, (3‐allyl‐2‐(allyloxy)phenyl)methanol and (3‐allyl‐2‐(prop‐2‐yn‐1‐yloxy)phenyl)methanol each containing two reactive functionalities viz. allyl, allyloxy and allyl, propargyloxy, respectively, were synthesized from 3‐allylsalicyaldehyde as a starting material. Well defined α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy bifunctionalized poly(ε‐caprolactone)s with molecular weights in the range 4200–9500 and 3600–10,900 g/mol and molecular weight distributions in the range 1.16–1.18 and 1.15–1.16, respectively, were synthesized by ROP of ε‐caprolactone employing these initiators. The presence of α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone)s was confirmed by FT‐IR, 1H, 13C NMR spectroscopy, and MALDI‐TOF analysis. The kinetic study of ROP of ε‐caprolactone with both the initiators revealed the pseudo first order kinetics with respect to ε‐caprolactone consumption and controlled behavior of polymerization reactions. The usefulness of α‐allyl, α′‐allyloxy functionalities on poly(ε‐caprolactone) was demonstrated by performing the thiol‐ene reaction with poly(ethylene glycol) thiol to obtain (mPEG)2‐PCL miktoarm star copolymer. α‐Allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone) were utilized in orthogonal reactions i.e copper catalyzed alkyne‐azide click (CuAAC) with azido functionalized poly(N‐isopropylacrylamide) followed by thiol‐ene reaction with poly(ethylene glycol) thiol to synthesize PCL‐PNIPAAm‐mPEG miktoarm star terpolymer. The preliminary characterization of A2B and ABC miktoarm star copolymers was carried out by 1H NMR spectroscopy and gel permeation chromatography (GPC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 844–860  相似文献   

8.
In the presence of β‐cyclodextrin (β‐CD), reversible addition–fragmentation chain transfer (RAFT) polymerization has been successfully applied to control the molecular weight and polydispersity [weight‐average molecular weight/number‐average molecular weight (Mw/Mn)] in the miniemulsion polymerization of butyl methacrylate, with 2‐cyanoprop‐2‐yl dithiobenzoate as a chain‐transfer agent (or RAFT agent) and 2,2′‐azoisobutyronitrile (AIBN) as an initiator. β‐CD acted as both a stabilizer and a solubilizer, assisting the transportation of the water‐insoluble, low‐molecular‐weight RAFT agent into the polymerization loca (i.e., droplets or latex particles) and thereby ensuring that the RAFT agent was homogeneous in the polymerization loca. The polymers produced in the system of β‐CD exhibited narrower polydispersity (1.2 < Mw/Mn < 1.3) than those without β‐CD. Moreover, the number‐average molecular weight in the former case could be controlled by a definite amount of the RAFT agent. Significantly, β‐CD was proved to have a favorable effect on the stability of polymer latex, and no coagulum was observed. The effects of the concentrations of the RAFT agent and AIBN on the conversion, the molecular weight and its distribution, and the particle size of latices were investigated in detail. Furthermore, the influences of the variations of the surfactant (sodium dodecyl sulfate) and costabilizer (hexadecane) on the RAFT/miniemulsion polymerization were also studied. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2931–2940, 2005  相似文献   

9.
Previously published material on the α‐methyl styrene/methyl methacrylate (α‐MS/MMA) copolymer system at temperatures above the ceiling temperature of α‐MS has focused on low‐conversion results. Several attempts have been made to estimate copolymer reactivity ratios from experimental data, but in most cases errors are present in the determination of copolymer composition variables. In this article, the results of rigorous parameter estimations, as applied to two sets of equations developed independently by P. Wittmer (Adv Chem 1971, 99, 140–174) and H. Kruger, J. Bauer, and J. Rubner (Makromol Chem 1987, 188, 2163–2175), are discussed. Experimental data for the copolymer system at low conversions, as well as over the full conversion range, are presented, covering a temperature range of 60–140 °C. A comparison of the data trends with traditional copolymer systems indicates that the reversibility of both MMA and α‐MS must be considered when composition, polymerization rate, or molecular weight equations are being developed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1981–1990, 2000  相似文献   

10.
A reversible addition–fragmentation chain transfer (RAFT) agent, 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN), was synthesized and applied to the RAFT polymerization of glycidyl methacrylate (GMA). The polymerization was conducted both in bulk and in a solvent with 2,2′‐azobisisobutyronitrile (AIBN) as the initiator at various temperatures. The results for both types of polymerizations showed that GMA could be polymerized in a controlled way by RAFT polymerization with CPDN as a RAFT agent; the polymerization rate was first‐order with respect to the monomer concentration, and the molecular weight increased linearly with the monomer conversion up to 96.7% at 60 °C, up to 98.9% at 80 °C in bulk, and up to 64.3% at 60 °C in a benzene solution. The polymerization rate of GMA in bulk was obviously faster than that in a benzene solution. The molecular weights obtained from gel permeation chromatography were close to the theoretical values, and the polydispersities of the polymer were relatively low up to high conversions in all cases. It was confirmed by a chain‐extension reaction that the AIBN‐initiated polymerizations of GMA with CPDN as a RAFT agent were well controlled and were consistent with the RAFT mechanism. The epoxy group remained intact in the polymers after the RAFT polymerization of GMA, as indicated by the 1H NMR spectrum. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2558–2565, 2004  相似文献   

11.
A series of new reversible addition–fragmentation chain transfer (RAFT) agents with cyanobenzyl R groups were synthesized. In comparison with other dithioester RAFT agents, these new RAFT agents were odorless or low‐odor, and this made them much easier to handle. The kinetics of methyl methacrylate radical polymerizations mediated by these RAFT agents were investigated. The polymerizations proceeded in a controlled way, the first‐order kinetics evolved in a linear fashion with time, the molecular weights increased linearly with the conversions, and the polydispersities were very narrow (~1.1). A poly[(methyl methacrylate)‐block‐polystyrene] block copolymer was prepared (number‐average molecular weight = 42,600, polydispersity index = 1.21) from a poly(methyl methacrylate) macro‐RAFT agent. These new RAFT agents also showed excellent control over the radical polymerization of styrenics and acrylates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1535–1543, 2005  相似文献   

12.
The copolymerization of ethylene with cyclopentene catalyzed by three α‐diimine nickel(II) complexes in the presence of methylaluminoxane (MAO) was investigated. High‐molecular‐weight branched ethylene/cyclopentene copolymers with only cis‐1,3‐enchained cyclopentene units, which has not been reported previously, were obtained. The catalytic activity, cyclopentene incorporation, copolymer molecular weight, and molecular‐weight distribution could be controlled over a wide range through the variation of the catalyst structure and polymerization conditions, including cyclopentene concentration in the feed and polymerization temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2186–2192, 2008  相似文献   

13.
A well‐defined comblike copolymer of poly(ethylene oxide‐co‐glycidol) [(poly(EO‐co‐Gly)] as the main chain and poly(ε‐caprolactone) (PCL) as the side chain was successfully prepared by the combination of anionic polymerization and ring‐opening polymerization. The glycidol was protected by ethyl vinyl ether to form 2,3‐epoxypropyl‐1‐ethoxyethyl ether (EPEE) first, and then ethylene oxide was copolymerized with EPEE by an anionic mechanism. The EPEE segments of the copolymer were deprotected by formic acid, and the glycidol segments of the copolymers were recovered after saponification. Poly(EO‐co‐Gly) with multihydroxyls was used further to initiate the ring‐opening polymerization of ε‐caprolactone in the presence of stannous octoate. When the grafted copolymer was mixed with α‐cyclodextrin, crystalline inclusion complexes (ICs) were formed, and the intermediate and final products, poly(ethylene oxide‐co‐glycidol)‐graft‐poly(ε‐caprolactone) and ICs, were characterized with gel permeation chromatography, NMR, differential scanning calorimetry, X‐ray diffraction, and thermogravimetric analysis in detail. The obtained ICs had a channel‐type crystalline structure, and the ratio of ε‐caprolactone units to α‐cyclodextrin for the ICs was higher than 1:1. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3684–3691, 2006  相似文献   

14.
A copolymerization of macromonomer poly(ethylene oxide) (PEO) with a styryl end group (PEOS) and styrene was successfully carried out in the presence of poly(ε‐caprolactone) (PCL) with 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy end group (PCLT). The resulting copolymer showed a narrower molecular weight distribution and controlled molecular weight. The effect of the molecular weight and concentration of PCLT and PEOS on the copolymerization are discussed. The purity of PEOS exerted a significant effect on the copolymerization; when the diol contents of PEO macromonomer were greater than 1%, the crosslinking product was found. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2093–2099, 2004  相似文献   

15.
A detailed investigation of addition–fragmentation chain transfer (AFCT) in the free‐radical polymerization of methyl methacrylate (MMA) in the presence of methyl α‐(bromomethyl)acrylate (MBMA) was carried out to elucidate mechanistic details with efficient macromonomer synthesis as an underlying goal. Advanced modeling techniques were used in connection with the experimental work. Curve fitting of simulated and experimental molecular weight distributions with respect to the rate coefficient for addition of propagating radicals to MBMA (kadd) over 60–120 °C resulted in Eadd = 21.7 kJ mol?1 and Aadd = 2.18 × 106 M?1 s?1 and a very weak temperature dependence of the chain‐transfer constant (EaddEp). The rate coefficient for fragmentation of adduct radicals at 60 °C was estimated as kf ≈ 39 s?1 on the basis of experimental data of the MMA conversion and the concentration of 2‐carbomethoxy‐2‐propenyl end groups. The approach developed is generic and can be applied to any AFCT system in which copolymerization does not occur and in which the resulting unsaturated end groups do not undergo further reactions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2640–2650, 2004  相似文献   

16.
The copolymerization of propylene/ethylene and terpolymerization of propylene/ethylene/α‐olefins using long‐chain α‐olefins such as 1‐octene and 1‐decene have been carried out using EtInd2ZrCl2//methylaluminoxane. High concentrations of propylene and low concentrations of α‐olefins (near 2 mol % of the total olefin concentration in the liquid phase) were used. The effect of the ethylene concentration in copolymerizations of propylene/α‐olefins was studied at medium ethylene contents (12 and 40 mol % in the gas phase). The polymers were molecularly characterized by gel permeation chromatography‐multiangle laser light scattering, wide‐angle X‐ray scattering, Fourier transform infrared spectroscopy, and DSC analyses. The shorter α‐olefin studied (1‐octene) produced the highest improvement of activity in terpolymerization at 12 mol % ethylene in the gas phase. About 2 mol % of 1‐octene in the liquid phase increases the activity and decreases the molecular weight of terpolymers with respect to corresponding copolymers, whereas the mp is increased by almost 30 °C. The “termonomer effect” is less evident when higher amounts of ethylene are used. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1136–1148, 2001  相似文献   

17.
Long‐chain‐branched polyethylene with a broad or bimodal molecular weight distribution was synthesized by ethylene homopolymerization via a novel nickel(II) α‐diimine complex of 2,3‐bis(2‐phenylphenyl)butane diimine nickel dibromide ({[2‐C6H4(C6H5)]? N?C? (CH3)C(CH3)?N? [2‐C6H4(C6H5)]}NiBr2) that possessed two stereoisomers in the presence of modified methylaluminoxane. The influences of the polymerization conditions, including the temperature and Al/Ni molar ratio, on the catalytic activity, molecular weight and molecular weight distribution, degree of branching, and branch length of polyethylene, were investigated. The resultant products were confirmed by gel permeation chromatography, gas chromatography/mass spectrometry, and 13C NMR characterization to be composed of higher molecular weight polyethylene with only isolated long‐branched chains (longer than six carbons) or with methyl pendant groups and oligomers of linear α‐olefins. The long‐chain‐branched polyethylene was formed mainly through the copolymerization of ethylene growing chains and macromonomers of α‐olefins. The presence of methyl pendant groups in the polyethylene main chain implied a 2,1‐insertion of the macromonomers into [Ni]? H active species. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1325–1330, 2005  相似文献   

18.
The design, synthesis, and use of two new, stable, functionalized chain transfer agents (CTA's) containing OH and amine end groups for the RAFT polymerization is reported: 2‐hydroxyethoxy‐carbonylphenylmethyl dithiobenzoate and 2‐(2‐(tert‐butoxycarbonyl)ethylamino)‐2‐oxo‐1‐phenylethyl benzodithioate, respectively. The RAFT polymerization of n‐hexyl acrylate (HA) using those CTA's, were compared to several other functionalized dithiobenzoate esters reported in the literature containing COOH and Ester groups. The performances of the dithiobenzoates were compared in terms of kinetics and molecular weight distribution control. Good control in polymerization of n‐hexyl acrylate with a linear increase of Mn with conversion mantaining polydispersity indices (PDI) below 1.1 was obtained by use of the new functionalized CTA's developed and also by use of some other CTA's tested, to produce well‐defined linear polymers with one specific chain‐end functionality: ? OH, ? COOH or Amine. Using a postpolymerization reaction with functionalized azocompounds in a 5 to 1 ratio, α,ω‐telechelic polymers, with ? OH or ? COOH as functional group at the second end were obtained. By using this synthetic strategy α,ω‐homotelechelic and heterotelechelic polymers were readily prepared. The chemical availability of functional end‐groups in the telechelics was demonstrated by reaction with methacrylic anhydride. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3033–3051, 2010  相似文献   

19.
Hydrogen‐bonded supramolecular polymers were prepared from the derivatives of α‐amino‐ε‐caprolactam (ACL), obtained from a renewable resource. Several self‐complimentary bis‐ or tetra‐caprolactam monomers were synthesized by varying the number of carbons of the spacer between the hydrogen‐bonding end groups. Physical properties of these hydrogen‐bonded polymers were clearly demonstrated by differential scanning colorimetry, solid‐state NMR, and X‐ray powder diffraction analyses. The supramolecular behavior was also supported by fiber formation from the melt for several of these compounds, and stable glassy materials were prepared from the physical mixtures of two different biscaprolactams. The self‐association ability of ACL was also used by incorporating ACL at the chain ends of low‐molecular weight Jeffamine (Mn = 900 g/mol) using urea and amide linkages. The transformation of this liquid oligomer at room temperature into a self‐standing, transparent film clearly showed the improvement in mechanical properties obtained by the introduction of terminal hydrogen‐bonding groups. Finally, the use of monomers with a functionality of four gave rise to network formation either alone or combination with bifunctional monomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
The γ‐initiated reversible addition–fragmentation chain transfer mediated free‐radical graft copolymerization of styrene and m‐isopropenyl‐α,α′‐dimethylbenzyl isocyanate (TMI) from a polypropylene (PP) solid phase was performed with cumyl phenyldithioacetate (CPDA) as the chain‐transfer agent. The initial CPDA concentration was 8 × 10?3 mol L?1. Polymerizations were performed with a dose rate of 0.18 kGy h?1 at the ambient temperature. Initial comonomer mixtures with 15, 30, and 50 mol % TMI were used. Depending on the amount of TMI in the initial comonomer mixture, the plot of the grafting ratio versus the time showed two grafting regimes (for 15 and 50 mol % TMI) or one (for 30 mol % TMI). Scavenger lanterns with 15 and 50 mol % TMI featured two isocyanate loading regimes, the second with higher loading capacities. The scavenger lanterns with 30 mol % TMI showed a linear loading capacity over the full grafting ratio. A maximum loading capacity of 110 μmol per scavenger lantern was achieved with 50 mol % TMI at a grafting ratio of approximately 60 wt %. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 857–864, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号