共查询到20条相似文献,搜索用时 15 毫秒
1.
Sedigheh Bagheri‐Kazemabad Daniel Fox Yanhui Chen Hongzhou Zhang Biqiong Chen 《先进技术聚合物》2014,25(10):1116-1121
The influence of nanoclay on the morphology and properties of the polypropylene (PP)/ethylene–octene block copolymer (EOC) blend with double compatibilizers of maleated PP (PP‐g‐MA) and maleated EOC (EOC‐g‐MA) was investigated and compared with the nanocomposites containing either PP‐g‐MA or EOC‐g‐MA as a compatibilizer. X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy were utilized for morphological characterization in conjunction with dynamic mechanical thermal analysis, mechanical testing, and rheological evaluation of these nanocomposites. The results suggested that in the nanocomposite including both compatibilizers of PP‐g‐MA and EOC‐g‐MA, clay was dispersed as a mixed structure of intercalation and exfoliation in both phases of the polymer blend. Comparing the mechanical properties of the studied nanocomposite with nanocomposites of PP/EOC/PP‐g‐MA/clay and PP/EOC/EOC‐g‐MA/clay also indicated that the nanocomposite containing mixed compatibilizers displayed higher tensile modulus, tensile strength, and complex viscosity because of the better dispersion of clay in both phases. The results also confirmed the increased structural stability and reduced dispersed phase size of PP/EOC/PP‐g‐MA/EOC‐g‐MA blend in the presence of clay that proposed the compatibilization role of clay in this nanocomposite. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
2.
Jae Hun Shim Jung Hiuk Joo Sung Hun Jung Jin‐San Yoon 《Journal of Polymer Science.Polymer Physics》2007,45(5):607-615
Polypropylene (PP)/nylon 6/clay composites were prepared by compounding of PP, which had previously been treated with two kinds of silane compounds, with a master batch composed of 90 wt % of nylon 6 and 10 wt % of octadecyl amine‐modified sodium montmorillonite (NM10). The morphology of the composites was investigated by means of SEM, TEM, XRD, and energy‐dispersive X‐ray analysis. All of the composites exhibited a phase‐separated morphology, irrespective of whether the PP was modified with the silane compounds or not. However, adhesive strength between the modified PP and NM10 was stronger than that between neat PP and NM10. Moreover, the PP grafted with 3‐(trimethoxysilyl)propyl methacrylate (PP2) reacted with the silanol groups of the clay to form PP‐clay hybrid during the compounding, which acted as a compatibilizer for the PP/nylon 6/clay composite. PP2NM composite (PP2/NM10 80/20 on weight basis) exhibited a peculiar morphology, in that the PP‐rich phase formed island domains within the nylon 6‐rich domains, which were in turn dispersed in the PP‐rich continuous matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 607–615, 2007. 相似文献
3.
Miroslaw Pluta Marie‐Amlie Paul Michaël Alexandre Philippe Dubois 《Journal of Polymer Science.Polymer Physics》2006,44(2):312-325
Plasticized polylactide (PLA) – layered silicate nanocomposites were obtained by melt blending PLA with polyethylene glycol as plasticizer (20 wt %) and with different montmorillonite fillers: Cloisite® 20A, Cloisite® 25A, and Cloisite® 30B (from 1 to 10 wt %). Comparative samples of melt‐blended polylactide (without filler) and plasticized PLA with 20 wt % PEG were considered as well. Samples have been aged for 1 and 4 years and their chemical and physical characteristics were compared with not aged reference ones. It was found that molecular weight of the PLA decreased upon melt‐processing and aging, particularly when the Cloisite content increased, without a clear relation to the nature of the organo‐modifier. On the contrary, the PEG plasticizer was practically undegraded upon melt processing and aging. Structural studies revealed that plasticized PLA and plasticized PLA‐based nanocomposites are unstable in time of aging and undergo deplasticization. They showed, after aging, the presence of a thin PEG crystalline layer at the surface of the samples and improved the order in the PLA matrix to a higher extent in plasticized polylactide than in plasticized nanocomposite (due to clay stabilization effect). The amount of PEG diffusing toward sample surface was correlated with aging time, molecular weight of PLA matrix, and Cloisite® type, in clear relation to the extent of intercalation with PLA and PEG. Some modifications of the viscoelastic properties of PLA matrix, induced by the presence of both the nanoparticlate filler and the plasticizer, as well as a deterioration of the mechanical properties upon aging were observed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 312–325, 2006 相似文献
4.
Synthetic preparations,thermal properties and crystallization characterization of PLLA‐PPG block copolymers/clay nanocomposites 下载免费PDF全文
In this study, intercalation of the polymer or pre‐polymer from solution was used to blend different proportions of polylactic acid‐propylene glycol (LPG) copolymers (polypropylene glycols (PPG) of : 700, 1000, 2000) and lipophilic montmorillonite (clay) in order to investigate the melting and the crystalline nature of LPG copolymers/clay nanocomposites via a differential scanning calorimeter (DSC). In addition, changes in the intermolecular force and crystal morphology of the nanocomposites under different crystallization conditions were also studied. For the results, it was observed from a thermogravimetric analyzer that increasing the clay content elevated the weight loss temperature. In non‐isothermal experiments using a DSC, it was discovered that the melting temperature and crystallization temperature of the LPG copolymers also increased with increasing amounts of added clay. The crystallinity of LPG2000 + 1.5 wt% clay was enhanced by 17.00%; in addition, it was found in the crystallinity study that adding clay slowed down the crystallization rate of the LPG copolymers. Moreover, it was found via X‐ray diffractometer (XRD) that the intensity of the diffraction peaks of the 1.5 wt% specimen was stronger than that of the 0.5 wt% specimens. The results imply that copolymers with a longer chain length provide greater space for the crystals to grow, thus making it easier for larger crystals to grow. Conversely, the added clay generates an inhibitory effect in copolymers, reducing the d‐spacing (d) in the XRD. Therefore, adding clay would change the crystallization behavior and the morphology of the LPG copolymers. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
5.
A. Vermogen E. Picard M. L. Milan K. Masenelli‐Varlot J. Duchet G. Vigier E. Espuche J. F. Gérard 《Journal of Polymer Science.Polymer Physics》2008,46(18):1966-1975
Semi‐crystalline polymer‐clay nanocomposite properties are often considered only by their clay dispersion state. The purpose of this work is to highlight texture effects on semi crystalline polymer‐clay properties. Maleic anhydride‐grafted polyethylene nanocomposites with two different processing techniques (Blown Extrusion and Compression) were studied. The processing was shown to induce different crystalline lamellae orientation in the films but with no significant changes in the crystalline lamellae long period, degree of crystallinity, clay particle orientation morphology and dispersion. The impact of these specific textures on the nanocomposites barrier and tensile properties were reported. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1966–1975, 2008 相似文献
6.
A microencapsulated flame retardant with a melamine‐formaldehyde shell was prepared by in situ polymerization, then incorporated into an iPP matrix with a coupling agent to manufacture multifilament yarns by melt spinning. The influence of the post‐treatment on the resulted microcapsules with an alcoholic solution was also studied. The spinnability of these formulations based on the interface characterization from contact angle measurements, tensile test and thermal characterizations was explored to determine the maximum draw ratio (DR) to apply. Finally, knitted fabrics were processed from multifilaments, and their flame‐retardant properties were evaluated by performing fire tests according to the FMVSS 302 and Din 4102 part B experiments. The different mechanical and thermal behaviors were discussed in terms of the influence of the DR and the post‐treatment applied on fibers during the spinning process and during the recovery of the microcapsules, respectively. The results showed that it was possible to obtain multifilament yarns with a DR of 4, but the best properties were obtained with a DR of 3 and for un‐treated microcapsules. Furthermore, the samples containing un‐treated microcapsules reach a B rating at the FMVSS test with a fast flame progression and a very low duration of burning. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
7.
Miroslaw Pluta Marie‐Amlie Paul Michaël Alexandre Philippe Dubois 《Journal of Polymer Science.Polymer Physics》2006,44(2):299-311
Polylactide (PLA)‐layered silicate nanocomposites plasticized with 20 wt % of poly(ethylene glycol) 1000 were prepared by melt blending. Three kinds of organo‐modified montmorillonites—Cloisite® 20A, Cloisite® 25A, and Cloisite® 30B—were used as fillers at a concentration level varying from 1–10 wt %. Neat PLA and plasticized PLA with the same thermomechanical history were considered for comparison. Nanocomposites based on amorphous PLA were obtained via melt‐quenching. The influence of both plasticization and nanoparticle filling on the physicochemical properties of the nanocomposites were investigated. Characterization of the systems was achieved by size exclusion chromatography (SEC), thermogravimetric analysis (TGA), thermally modulated differential scanning calorimetry (TMDSC), X‐ray diffraction (XRD), and dynamic mechanical analysis (DMTA). SEC revealed a decrease of the molecular weight of the PLA matrix with the filler content. Thermal behavior on heating showed one cold crystallization process in the reference neat PLA sample, while two cold crystallization processes in plasticized PLA and plasticized nanocomposites. The thermal windows of these processes tend to increase with the filler content. The crystalline form of PLA developed upon heating was affected neither by the plasticization nor by the type and content of Cloisite used. It was found that the series of organo‐modified montmorillonites with decreasing affinity to PLA is Cloisite® 30B, Cloisite® 20A, and Cloisite® 25A, respectively. The dynamic mechanical properties were sensitive to the sample composition. Generally, the storage modulus increased with the filler content. Glassy PEG, well dispersed within unfilled PLA matrix, exhibited also a reinforcing effect, since the storage modulus of this sample was higher than for unplasticized reference at temperature region below the glass transition of PEG. Moreover, loss modulus of all plasticized samples revealed an additional maximum ascribed to the glass transition of PEG–rich dispersed phase, indicating partial miscibility of organic components of the systems investigated. The magnitude of this mechanical loss was correlated with the filler content, and to some extent, also with the nanofiller ability to be intercalated by polymer components. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 299–311, 2006 相似文献
8.
V. Causin Carla Marega Roberta Saini A. Marigo G. Ferrara 《Journal of Thermal Analysis and Calorimetry》2007,90(3):849-857
The effect of clay dispersion on the crystallization behavior of isotactic polypropylene (iPP)-based nanocomposites is reported.
The T
m0 of the materials was calculated by the method proposed by Marand, the kinetics of crystallization was evaluated by the Avrami
analysis and also the Hoffman-Lauritzen theory of crystallization regimes was applied. Montmorillonite was found to depress
T
m0, to enhance the rate of crystallization and to ease the chain folding of macromolecules. These effects were magnified if
clay was exfoliated, rather than intercalated. 相似文献
9.
Poly(ether‐imide) and related sepiolite nanocomposites: investigation of physical,thermal, and mechanical properties 下载免费PDF全文
Novel poly(ether‐imide) and sepiolite nanocomposites were synthesized based on a unique diamine monomer with the aim of improving physical and mechanical properties of final polyimide films. The diamine was polycondensed with 4,4′‐(hexafluoroisopropylidene) diphthalic anhydride to produce related poly(ether amic acid) prepolymer. Pure poly(ether‐imide) and nanocomposite films were prepared via thermal imidization process of poly(ether amic acid). Coexistence of ether, pyridine, and phenylene functional groups in the diamine chemical structure resulted in flexible polyimide films with significant thermal, physical, and mechanical properties. Thermal stability, glass‐transition temperature, dimensional stability, and tensile properties of polymer and nanocomposites were studied and compared. Morphology of nanocomposites was also investigated using scanning and transmission electron microscopic methods to study the distribution and dispersion behavior of sepiolite nanofibers in the polyimide matrix. By introduction of sepiolite nanoparticles, overall improvement of properties was observed in respect to pure polyimides. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
10.
Jeng‐Yue Wu Tzong‐Ming Wu Wei‐Yan Chen Shih‐Jung Tsai Wen‐Faa Kuo Gwo‐Yang Chang 《Journal of Polymer Science.Polymer Physics》2005,43(22):3242-3254
X‐ray diffraction and differential scanning calorimeter (DSC) methods have been used to investigate the crystallization behavior and crystalline structure of hexamethylenediamine (HMDA)‐modified maleic‐anhydride‐grafted polypropylene/clay (PP‐g‐MA/clay) nanocomposites. These nanocomposites have been prepared by using HMDA to graft the PP‐g‐MA (designated as PP‐g‐HMA) and then mixing the PP‐g‐HMA polymer in hot xylene solution, with the organically modified montmorillonite. Both X‐ray diffraction data and transmission electron microscopy images of PP‐g‐HMA/clay nanocomposites indicate that most of the swellable silicate layers are exfoliated and randomly dispersed into PP‐g‐HMA matrix. DSC isothermal results revealed that introducing 5 wt % of clay into the PP‐g‐HMA structure causes strongly heterogeneous nucleation, which induced a change of the crystal growth process from a three‐dimensional crystal growth to a two‐dimensional spherulitic growth. Mechanical properties of PP‐g‐HMA/clay nanocomposites performed by dynamic mechanical analysis show significant improvements in the storage modulus when compared to neat PP‐g‐HMA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3242–3254, 2005 相似文献
11.
Sung T. Lim Chung H. Lee Hyoung J. Choi Myung S. Jhon 《Journal of Polymer Science.Polymer Physics》2003,41(17):2052-2061
Synthetic biodegradable aliphatic polyester (BAP) intercalated into organoclay was prepared by melt compounding, and its solidlike characteristics were investigated via several rheological test modes: steady shear rotation, oscillation, and creep testing. Structural investigations with X‐ray diffraction and transmission electron spectroscopy were also performed for a better understanding of the characteristic rheological behaviors. The creep, recovery, and stress modulus exhibited a solidlike transition of BAP/clay nanocomposites that depended on the clay content. An increase in the zero shear rate viscosity and a shifting of the crossover point (storage modulus vs loss modulus) to a lower frequency were also observed with increasing clay contents. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2052–2061, 2003 相似文献
12.
Huaili Qin Shimin Zhang Chungui Zhao Mingshu Yang 《Journal of Polymer Science.Polymer Physics》2005,43(24):3713-3719
The thermal degradation kinetics of polypropylene/clay microcomposites and nanocomposites were studied by thermogravimetric analysis. In comparison with pure polypropylene, the reaction order of the degradation of the composites became zero‐order, and the activation energy increased dramatically. The zero‐order kinetics were associated with the acidic sites (H+) created on the clay layers, whereas the increase in the activation energy was coupled with the shielding effect of clay. The kinetic analysis could provide additional mechanistic clues concerning the thermal stability and flammability of polymer/clay nanocomposites. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3713–3719, 2005 相似文献
13.
I. Gonzlez J. I. Eguiazbal J. Nazbal 《Journal of Polymer Science.Polymer Physics》2005,43(24):3611-3620
Exfoliated polyamide‐6 (PA6)/organically modified montmorillonite clay (OMMT) nanocomposites (PNs) were modified with partially maleinized styrene–ethylene/butadiene–styrene triblock copolymers (SEBS) at three maleinization levels in an attempt to link in these materials high toughness with appropriate small‐strain and fracture tensile properties. OMMT stayed only in the PA6 matrix, and no preferential location in the matrix/rubber interphase was observed. The increased dispersed phase size upon the addition of OMMT was attributed to interactions between maleic anhydride (MA) functionalized SEBS and the surfactant of OMMT. The rubber particle size generally decreased when the MA content of SEBS increased, and this indicated compatibilization. The subsequent good adhesion led to tough nanocomposites across a wide range of both strain rates and fracture modes. As the critical interparticle distance (τc) decreased with the MA content, and the other parameters that could influence the surface‐to‐surface mean interparticle distance did not change, it is proposed that in these PNs higher adhesion leads to a smaller τc value. Finally, the presence in the matrix of a nanostructured clay makes the rubber content necessary for the toughness jump to increase and τc to decrease. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3611–3620, 2005 相似文献
14.
Navid Karimpour‐Motlagh Hossein Ali Khonakdar Seyed Hassan Jafari Mahyar Panahi‐Sarmad Azizeh Javadi Shahrokh Shojaei Vahabodin Goodarzi 《先进技术聚合物》2019,30(11):2695-2706
Polypropylene/polylactic acid (PP/PLA) blends containing 5 wt% of nanoclay in presence and absence of an ethylene‐butylacrylate‐glycidyl methacrylate terpolymer as compatibilizer were prepared by melt‐mixing process. A matrix‐droplet–type morphology confirmed by transmission electron microscope (TEM) and scanning electron microscopy (SEM) studies is formed in presence and absence of the compatibilizer in which the clay platelets were mainly localized in the polylactic acid (PLA) dispersed phase. Degradation studies by means of thermogravimetry analysis (TGA) and analysis of degradation activation energy (Ea), Tmax (maximum degradation temperature), and ΔT (difference between initial and final degradation temperatures) parameters for each polymer component of the system revealed that incorporation of less stable PLA phase to polypropylene (PP) decreases Ea and Tmax parameters, and hence, reduces the thermal stability of PP phase, while incorporation of clay nanoplatelets to the neat blend further reduces its thermal stability attributed to their lack of localization in PP phase. Compatibilization of the filled system results in migration of clay nanoplatelets toward PP and improves Ea and Tmax of PP phase. On the other hand, the Ea and Tmax of PLA phase of the blend were increased with incorporation of clay and its localization within that phase, while compatibilization of the filled system slightly reduces thermal stability of PLA phase due to migration of clay toward PP. A correlation was found between Ea and intensity of the thermogravimetry analysis Fourier‐transform infrared spectroscopy (TGA‐FTIR) peaks of the evolved products. Using the Criado method, a detailed analysis on degradation mechanism of each component was performed, and the changes in the degradation mechanism of the developed systems were determined. 相似文献
15.
E. M. Araújo Renata Barbosa Crislene R. S. Morais L. E. B. Soledade A. G. Souza Moema Q. Vieira 《Journal of Thermal Analysis and Calorimetry》2007,90(3):841-848
Nanocomposites containing both polyethylene and montmorillonite clay organically modified with four different types of quaternary
ammonium salts were obtained via direct melt intercalation. Thus, the main purpose of this work was to evaluate the effect
of the organoclay on the thermal stability of polyethylene. The organoclays were characterized by XRD, FTIR, DSC and TG. The
polyethylene/organoclay nanocomposites were studied by XRD, TEM, TG, besides an evaluation of their mechanical properties.
The results showed that the salts were incorporated by intercalation between the layers of the organoclay and, apparently
that the nanocomposites were more thermally stable than pure polyethylene. 相似文献
16.
Bakhshali Massoumi Mojtaba Abbasian Rahim Mohammad‐Rezaei Amir Farnudiyan‐Habibi Mehdi Jaymand 《先进技术聚合物》2019,30(6):1484-1492
A polystyrene‐modified epoxidized novolac resin/montmorillonite nanocomposite was fabricated and characterized successfully. For this purpose, novolac resin (NR) was epoxidized through the reaction of phenolic hydroxyl group with epichlorohydrin in super basic medium to produce epoxidized novolac resin (ENR). Afterward, a polystyrene was synthesized by atom transfer radical polymerization (ATRP) technique, and then brominated at the benzylic positions using N‐bromosuccinimide (NBS). The brominated polystyrene (PSt‐Br) was reacted with ethanolamine in basic medium in order to afford an amine‐functionalized polystyrene (PSt‐NH2). An organo‐modified montmorillonite (O‐MMT) was synthesized through the treatment of MMT with hexadecyl trimethyl ammonium chloride salt. Finally, ENR‐PSt/MMT nanocomposite was fabricated through curing a mixture of ENR (70 wt.%) and O‐MMT (5 wt.%) with PSt‐NH2 (25 wt.%). Transition electron microscopy (TEM) and powder X‐ray diffraction (XRD) analysis revealed that the fabricated nanocomposite has an exfoliated structure. Thermal property studies using thermogravimetric analysis (TGA) showed that the curing of ENR by PSt‐NH2, as well as incorporation of a small amount of MMT have synergistic effect on the thermal stability of the ENR resin. 相似文献
17.
Meng Feng Fangling Gong Chungui Zhao Guangming Chen Shimin Zhang Mingshu Yang Charles C. Han 《Journal of Polymer Science.Polymer Physics》2004,42(18):3428-3438
Blends of isotactic polypropylene and polyamide‐6/clay nanocomposites (iPP/NPA6) were prepared with an internal batch mixer. A high content of the β‐crystalline form of isotactic polypropylene (β‐iPP) was observed in the injection‐molded samples of the iPP/NPA6 blends, whereas the content of β‐iPP in the iPP/PA6 blends and the iPP/clay composite was low and similar to that of neat iPP. Quiescent melt crystallization was studied by means of wide‐angle X‐ray diffraction, differential scanning calorimetry, and polarized optical microscopy. We found that the significant β‐iPP is not formed during quiescent melt crystallization regardless of whether the sample used was the iPP/NPA6 blend or an NPA6 fiber/iPP composite. Further characterization of the injection‐molded iPP/NPA6 revealed a shear‐induced skin–core distribution of β‐iPP and the formation of β‐iPP in the iPP/NPA6 blends is related to the shear flow field during cavity‐filling. In the presence of clay, the deformation ability of the NPA6 domain is decreased, as evidenced by rheological and morphological studies. It is reasonable that the enhanced relative shear, caused by low deformability of the NPA6 domain in the iPP matrix, is responsible for β‐iPP formation in the iPP/NPA6 blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3428–3438, 2004 相似文献
18.
The resistance to air permeation was investigated for an intercalated clay/acrylonitrile‐butadiene copolymer nanocomposite. The nanocomposite is prepared by melt mixing the organo‐treated montmorillonite into a rubber matrix, together with peroxide curative, and crosslinked by conventional compression molding for typical rubbers. In the case of intercalated nanocomposite, the air permeability decreases considerably with increasing clay content, and the decreasing trend agrees reasonably with the Neilson's tortuous model. No considerable improvement is found when the pure montmorillonite is added. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
19.
The unison of vegetable oil‐based hyperbranched polymers with nanotechnology can unhook myriad of avant‐garde applications of such materials. Thus Mesua ferrea L. seed oil‐based hyperbranched polyurethane (HBPU)/clay nanocomposites and their performance, with special reference to adhesive strength, are reported for the first time. The nanocomposites of the hyperbranched polyurethane with organically modified nanoclay were obtained by ex situ solution technique and cured by bisphenol‐A‐based epoxy with poly(amido amine) hardener system. The partially exfoliated and well‐distributed structure of nanoclay was confirmed by XRD, SEM, and TEM studies. FTIR spectra indicate the presence of H‐bonding between nanoclay and the polymer matrix. Two times improvement in the adhesive strength and scratch hardness, 10 MPa increments in the tensile strength and 112°C more thermo‐stability have been observed without much affecting the impact resistance, bending, and elongation at break of the nanocomposites compared to the pristine epoxy modified HBPU system. Thus, the resulted nanocomposites are promising materials for different advanced applications including adhesive. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
20.
Nanocomposites based on polypropylene/polystyrene blends were prepared by melt mixing in a Thermo Haake Rheochord mixer. The effect of mercapto silane modified kaolin clay on the properties of nanocomposites has been studied. The characterization of polypropylene/polystyrene/clay nanocomposites was made by dynamic mechanical analysis, scanning electron microscope, and transmission electron microscopic, and the thermal stability was determined by using Thermogravimetric analysis. The activation energy of degradation was determined using three mathematical models, namely Horowitz–Metzger, Coats–Redfern and Broido's methods, and the results were compared. TGA results show an improved thermal stability for nanocomposite than the pure blend. The improvement in thermal stability of nanocomposites was confirmed by increasing the activation energy. Transmission electron microscopic observations showed that nanoclay layers were intercalated on the polymer matrix and were located at the interface between the two polymers Copyright © 2014 John Wiley & Sons, Ltd. 相似文献