首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of liquid–liquid phase separation (LLPS) on the crystallization behavior of poly(ethylene‐ran‐vinyl acetate) with a vinyl acetate content of 9.5 wt % (EVA‐H) in the critical composition of a 35/65 (wt/wt) EVA‐H/paraffin wax blend was investigated by small‐angle light and X‐ray scattering methods and rheometry. This blend exhibited an upper critical solution temperature (UCST) of 98°C, and an LLPS was observed between the UCST and the melting point of 88°C for the EVA‐H in the blend. As the duration time in the LLPS region increased before crystallization at 65°C, both the spherulite size and the crystallization rate of the EVA‐H increased, but the degree of the lamellar ordering in the spherulite and the degree of crystallinity of the EVA‐H in the blend decreased. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 707–715, 2000  相似文献   

2.
The effect of liquid–liquid phase‐separation (LLPS) on the crystallization behavior and mechanical properties of poly(ethylene‐ran‐vinyl acetate) (EVA) with various amounts of vinyl acetate and paraffin wax blend was investigated. The blend of EVA‐H (9.5% vinyl acetate) and the wax became homogeneous at temperatures greater than its upper critical solution temperature (UCST) (98°C), and an LLPS was observed between UCST and the melting point of 88°C for EVA‐H in the blend. The existence of the LLPS is attributed to the relatively large amount of the hydrophilic component of vinyl acetate in EVA, although the molecular weight of the wax was just 560. However, LLPS did not occur for the EVA/wax blend when the content of vinyl acetate in EVA was less than 3%. This behavior was explained by using the Flory–Huggins lattice model with an effective interaction parameter. The degree of crystallinity of EVA‐H in the EVA‐H/wax blend, judged from a melting endothermic peak in differential scanning calorimeter (DSC) thermograms obtained during heating runs, decreased with increasing duration time in the LLPS region. The flexural modulus of the EVA/wax blend became maximum at certain blend composition (about 30 ∼ 40 wt % EVA depending upon the amount of vinyl acetate). This behavior can be explained by the fact that this blend composition has the largest relative degree of crystallinity of EVA measured by DSC and wide‐angle X‐ray scattering method. We found that the flexural modulus of the binder itself is directly related to that of a feedstock consisting of larger amounts of metal powder and the binder, which can help someone to develop a suitable binder system for a powder injection molding process. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1991–2005, 1999  相似文献   

3.
Although selective laser sintering (SLS) has been widely applied in many fields, more research work is needed to develop proper polymer microspheres for SLS. Thermal‐induced phase separation (TIPS) is a facile way but rarely reported to prepare the polymer microspheres. The roles of liquid–liquid phase separation (LLPS) and crystallization in the TIPS process are not clear. In this study, proper polypropylene (PP) microspheres for SLS are successfully prepared via TIPS with xylene. The diameters and morphologies of these PP microspheres can be regulated easily by changing the PP concentration and the quench temperature. The large undercooling drives the solution into the metastable LLPS region and produces PP microspheres with smooth surfaces. The PP crystallization occurs both on the LLPS interface and inside the polymer‐rich phase when the solution is quenched to a temperature near the binodal line, and the tiny bent lamellae are formed on the microsphere surface. At higher temperature only PP crystallization occurs, which results in the formation of PP particles consisting of packed lamellae. The PP microspheres prepared here are suitable for SLS and promote the development of SLS potentially. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 320–329  相似文献   

4.
5.
The crystallization of poly(butylene terephthalate) (PBT) from moderately dilute solutions of PBT in a diglycidyl ether of bisphenol-A epoxy has been investigated. PBT dissolves in this epoxy approximately 35°C below its usual melting temperature of 227°C to form a one-phase solution. Cooling this solution below 165°C leads to rapid crystallization of the PBT. The resulting mixture of liquid epoxy and crystalline PBT has a low viscosity and contains highly birefringent, individual PBT spherulites. The PBT spherulites have a narrow size distribution and a high surface-to-volume ratio. These particles are suggested to arise from a rapid crystallization that follows liquid–liquid phase separation. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
With laser scanning confocal fluorescence microscopy, we demonstrate a novel type of morphology evolution in moderately thick films (70–100 μm) of ternary blends of polypropylene (PP), polyethylene (PE), and ethylene–propylene rubber (EPR), in which EPR is labeled with a benzothioxanthene dye (HY‐EPR). The blends are prepared by solution blending, and the phase morphology evolves during the annealing of the blend films in a stainless steel mold. Our results indicate that wetting of the mold surface is a driving force in morphology evolution for the two blend compositions investigated. For 81/14/5 PP/PE/HY‐EPR, phase evolution within the mold results in a laminar structure and hydrodynamic channels, features which have previously been found in thin films of polymer blends as a result of surface‐directed spinodal decomposition. In a blend with a lower weight fraction of the dispersed phase (92/7/1 PP/PE/HY‐EPR), we find that the PE/HY‐EPR domains are larger and more polydisperse closer to the surface because of wetting of the mold wall. We also show that the phase morphology in these films can be controlled by the nature of one or both of the surfaces being varied. When one of the mold surfaces is replaced with a thin film of PP homopolymer, we observe draining of PE/HY‐EPR from the PP to the mold surface, which results in a bilayer structure. A trilayer morphology is likewise obtained by the replacement of both mold surfaces with PP. We also carry out three‐dimensional image reconstruction on a single PE/HY‐EPR particle within the 81/14/5 PP/PE/HY‐EPR blend to obtain detailed information on the interphase structure. We find that HY‐EPR of this composition (30/70 ethylene/propylene) fully coats the PE dispersed phase and partially penetrates the PE droplets. This result falls between the interphase structures found for previously investigated EPR compositions (40/60 and 80/20 ethylene/propylene). © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 637–654, 2003  相似文献   

7.
The isothermal crystallization kinetics of poly(ethylene terephthalate) (PET) in blends with a fully aromatic liquid crystalline copolyester (Vectra A) were studied with differential scanning calorimetry. PET crystallization rates decreases with increasing Vectra fractions in the blends, and the percentage of PET that is crystalline also decreases with increasing Vectra. The equilibrium PET melting temperature for blends containing 40% or more Vectra is unambiguously below that of pure PET. Attenuated total reflectance Fourier-transform infrared spectroscopy measurements indicate that PET/Vectra transesterification does not take place. The results are consistent with a scenario based on prior NMR data in which there is some interphase mixing between the liquid crystalline and flexible polymers and an increase in the fraction of gauche conformers in the PET.  相似文献   

8.
In the present work, α‐form nucleating agent 1,3:2,4‐bis (3,4‐dimethylbenzylidene) sorbitol (DMDBS, Millad 3988) is introduced into the blends of polypropylene/ethylene–octene copolymer (PP/POE) blends to study the effect of the nucleating agent on the toughness of PP/POE blends through affecting the crystallization behavior of PP matrix. Compared with the PP/POE blends, in which the toughness of the blends increases gradually with the increasing content of POE and only a weak transition in toughness is observed, addition of 0.2 wt % DMDBS induces not only the definitely brittle‐ductile transition at low POE content but also the enhancement of toughness and tensile strength of the blends simultaneously. Study on the morphologies of impact‐fractured surfaces suggests that the addition of a few amounts of DMDBS increases the degree of plastic deformation of sample during the fracture process. WAXD results suggest that POE induces the formation of the β‐form crystalline of PP; however, DMDBS prevents the formation of it. SEM results show that the addition of DMDBS does not affect the dispersion and phase morphologies of POE particles in PP matrix. DSC and POM results show that, although POE acts as a nucleating agent for PP crystallization and which enhances the crystallization temperature of PP and decreases the spherulites size of PP slightly, DMDBS induces the enhancement of the crystallization temperature of PP and the decrease of spherulites size of PP more greatly. It is concluded that the definitely brittle–ductile transition behavior during the impact process and the great improvement of toughness of the blends are attributed to the sharp decrease of PP spherulites size and their homogeneous distribution obtained by the addition of nucleating agent. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 577–588, 2008  相似文献   

9.
Morphology development during isothermal crystallization in equal molecular weight isotactic polypropylene (iPP), syndiotactic polypropylene (sPP), and iPP/sPP blends was studied with time‐resolved simultaneous small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray diffraction (WAXD) with synchrotron radiation. The sPP melting point is 15–20 °C below that of the iPP component, and sPP multiple melting is not affected by blending for 50–100 wt % sPP compositions. SAXS and WAXD (at 115 and 137.5 °C) show that sPP crystallizes more slowly than iPP. The sPP long spacing is larger than that of iPP at both crystallization temperatures, exhibits a broader distribution, and changes to a greater extent during crystallization. Differential scanning calorimetry (DSC) cooling and SAXS/WAXD measurements show iPP crystallizing first and nearly to completion before sPP in a 50:50 iPP/sPP blend. At 115 °C, iPP crystals nucleate sPP in a 50:50 blend and modify the sPP lamellar spacing. The nucleation does not overcome the large difference in the iPP and sPP rates at 137.5 °C. Before sPP crystallization in a 50:50 blend (115 °C), the iPP long spacing is not affected by molten sPP. The iPP long spacing is slightly expanded by molten sPP, and the WAXD induction time is delayed at 137.5 °C. The observed iPP long spacing in the presence of molten sPP is consistent with previously reported results for iPP/atactic polypropylene (aPP) blends of similar molecular weight. Quantitative differences between the two types of blends are consistent with previously reported thermodynamic rankings. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1876–1888, 2001  相似文献   

10.
This article reports thermoset blends of bisphenol A‐type epoxy resin (ER) and two amphiphilic four‐arm star‐shaped diblock copolymers based on hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(propylene oxide) (PPO). 4,4′‐Methylenedianiline (MDA) was used as a curing agent. The first star‐shaped diblock copolymer with 70 wt % ethylene oxide (EO), denoted as (PPO‐PEO)4, consists of four PPO‐PEO diblock arms with PPO blocks attached on an ethylenediamine core; the second one with 40 wt % EO, denoted as (PEO‐PPO)4, contains four PEO‐PPO diblock arms with PEO blocks attached on an ethylenediamine core. The phase behavior, crystallization, and nanoscale structures were investigated by differential scanning calorimetry, transmission electron microscopy, and small‐angle X‐ray scattering. It was found that the MDA‐cured ER/(PPO‐PEO)4 blends are not macroscopically phase‐separated over the entire blend composition range. There exist, however, two microphases in the ER/(PPO‐PEO)4 blends. The PPO blocks form a separated microphase, whereas the ER and the PEO blocks, which are miscible, form another microphase. The ER/(PPO‐PEO)4 blends show composition‐dependent nanostructures on the order of 10?30 nm. The 80/20 ER/(PPO‐PEO)4 blend displays spherical PPO micelles uniformly dispersed in a continuous ER‐rich matrix. The 60/40 ER/(PPO‐PEO)4 blend displays a combined morphology of worm‐like micelles and spherical micelles with characteristic of a bicontinuous microphase structure. Macroscopic phase separation took place in the MDA‐cured ER/(PEO‐PPO)4 blends. The MDA‐cured ER/(PEO‐PPO)4 blends with (PEO‐PPO)4 content up to 50 wt % exhibit phase‐separated structures on the order of 0.5–1 μm. This can be considered to be due to the different EO content and block sequence of the (PEO‐PPO)4 copolymer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 975–985, 2006  相似文献   

11.
Blending of ethylene/1‐octene copolymers can be used to achieve a well‐controlled broad chemical composition distribution (CCD) required in several polyolefin applications. The CCD of copolymer blends can be estimated using crystallization analysis fractionation (CRYSTAF) or crystallization elution fractionation (CEF). Unfortunately, both techniques may be affected by the cocrystallization of chains with different compositions, leading to profiles that do not truly reflect the actual CCD of the polymer. Therefore, understanding how the polymer microstructure and the analytical conditions influence copolymer cocrystallization is critical for the proper interpretation of CRYSTAF and CEF curves. In this investigation, we studied the effect of chain crystallizabilities, blend compositions, and cooling rates on cocrystallization during CEF and CRYSTAF analysis. Cocrystallization is more prevalent when the copolymer blend has components with similar crystallizabilities, one of the components is present in much higher amount, and fast cooling rates are used. CEF was found to provide better CCD estimates than CRYSTAF in a much shorter analysis time. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

12.
In the present article, we investigate by differential scanning calorimetry (DSC) the thermal behavior (melting, crystallization, and crystal–crystal transitions) far from equilibrium of blends constituted of two crystalline polymers. In particular, the following blends are examined: PTFE–PFMVE, PTFE–FEP, and FEP–PFMVE where PTFE is poly(tetrafluoroethylene), PFMVE is poly(tetrafluoroethylene‐co‐perfluoromethylvinylether), and FEP is poly(tetrafluoroethylene‐co‐hexafluoropropylene). The two last ones are random tetrafluoroethylene copolymers with small amounts of comonomer. Our results indicate that, under the experimental investigated conditions, the blends containing PTFE do not give cocrystallization on cooling from the melt, although under very rapid crystallization conditions, quenching, the presence of the copolymer would seem to slightly influence PTFE crystallization (lower peak temperatures are observed for the crystalline transitions and the melting with respect to those of the neat homopolymer). The behavior of the FEP–PFMVE blend is completely different; in fact, our results indicate the occurrence of cocrystallization, then miscibility in the crystalline phase, for almost all compositions and all investigated experimental conditions. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 679–689, 1999  相似文献   

13.
This work examined the effect of the pre‐melting temperature (Tmax) on the thermal properties and crystalline structure of four miscible syndiotactic polystyrene (sPS)‐based blends containing 80 wt % sPS. The counterparts for sPS included a high‐molecular‐weight atactic polystyrene [aPS(H)], a medium‐molecular‐weight atactic polystyrene [aPS(M)], a low‐molecular‐weight atactic polystyrene [aPS(L)], and a low‐molecular‐weight poly(styrene‐co‐α‐methyl styrene) [P(S‐co‐αMS)]. According to differential scanning calorimetry measurements, upon nonisothermal melt crystallization, the crystallization of sPS shifted to lower temperatures in the blends, and the shift followed this order of counterpart addition: P(S‐co‐αMS) > aPS(L) > aPS(M) > aPS(H). The change in Tmax (from 285 to 315 °C) influenced the crystallization of sPS in the blends to different degrees, depending on the counterpart's molecular weight and cooling rate. The change in Tmax also affected the complex melting behaviors of pure sPS and an sPS/aPS(H) blend, but it affected those of the other blends to a lesser extent. Microscopy investigations demonstrated that changing Tmax slightly affected the blends' crystalline morphology, but it apparently altered that of pure sPS. Furthermore, the X‐ray diffraction results revealed that the α‐form sPS crystal content in the blends generally decreased with an increase in Tmax, and it decreased with a decrease in the cooling rate as well. The blends showed a lower α‐form content than pure sPS; a counterpart of a lower molecular weight more effectively reduced the formation of α‐form crystals. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2798–2810, 2006  相似文献   

14.
Polymer blends undergo external stresses such as pressure and shear in course of processing cycles. The knowledge of their phase behavior at each step of these cycles is crucial for understanding their physical properties and eventually improves their performance in practical applications. The effects of shear on the phase diagram of binary polymer blends are considered. A theoretical formulism is used upon which the free energy is the sum of two terms. The first term is modeled with the Flory–Huggins free energy of mixing and describes the thermodynamic behavior of the system in the quiescent state. The second term represents the excess free energy stored during flow. In the presence of shear flow, the excess free energy is expressed in terms of the viscosity and the shear modulus. Both quantities depend on composition and shear rate. The curvature of the variation of viscosity versus composition has a tremendous impact upon the nature of phase separation. Phase diagrams are described by the spinodal curves and show for the case considered here miscibility enhancement with increasing shear rate. A good correlation is found with experimental data of the literature on blends of polystyrene acrylonitril copolymer and polymethylmethacrylate. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

15.
Binary blends of linear low density polyethylene (PE) and polypropylene (PP), and ternary blends of PE, PP, and EP copolymer (EPR) were prepared in a finely mixed state. In all blends the ratio of PP to PE was 85/15. In some of the blends, the PE component was labeled with a fluorescent dye; in other blends, the EPR component was labeled. These blends were investigated by laser scanning confocal fluorescence microscopy [LCFM] as a function of annealing time as well as EPR compatibilizer content. In this way we were able to follow the evolution of sample morphology and the location of the EPR in the blends. The presence of EPR in the blends retards the growth of droplets of the dispersed PE phase. When EPR was added in amounts up to 5 wt %, it tended to cover the PE droplets in patches rather than form a true core-shell structure. In the LCFM images, the EPR/PP interface appeared sharper than the EPR/PE interface. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 979–991, 1997  相似文献   

16.
Understanding and controlling multicomponent co‐assembly is of primary importance in different fields, such as materials fabrication, pharmaceutical polymorphism, and supramolecular polymerization, but these aspects have been a long‐standing challenge. Herein, we discover that liquid–liquid phase separation (LLPS) into ion‐cluster‐rich and ion‐cluster‐poor liquid phases is the first step prior to co‐assembly nucleation based on a model system of water‐soluble porphyrin and ionic liquids. The LLPS‐formed droplets serve as the nucleation precursors, which determine the resulting structures and properties of co‐assemblies. Co‐assembly polymorphism and tunable supramolecular phase transition behaviors can be achieved by regulating the intermolecular interactions at the LLPS stage. These findings elucidate the key role of LLPS in multicomponent co‐assembly evolution and enable it to be an effective strategy to control co‐assembly polymorphism as well as supramolecular phase transitions.  相似文献   

17.
Liquid–liquid phase separation and subsequent homogenization during annealing in an extruded poly(ethylene terephthalate) (PET)/poly(ethylene‐2,6‐naphthalate) (PEN) blend were investigated with time‐resolved light scattering and optical microscopy. In the initial stage, the domain structure was developed by demixing via spinodal decomposition. In the later stage, the blend was homogenized by transesterification between the two polyesters. The crystallization rate depended on the sequence distribution of polymer chains, which was determined by the level of transesterification rather than the composition change of separated phases. When the crystallization of PEN preceded that of PET, PEN showed a higher melting point. However, when the crystallization rate of PEN was slower than that of PET, the previously formed PET crystals suppressed the crystallization of PEN, causing the coarse crystalline structure of PEN to have a lower melting point. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2625–2633, 2000  相似文献   

18.
Hydrogen bonding interactions, phase behavior, crystallization, and surface hydrophobicity in nanostructured blend of bisphenol A‐type epoxy resin (ER), for example, diglycidyl ether of bisphenol A (DGEBA) and poly(ε‐caprolactone)‐block‐poly(dimethyl siloxane)‐block‐poly(ε‐caprolactone) (PCL–PDMS–PCL) triblock copolymer were investigated by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, transmission electron microscopy, small‐angle X‐ray scattering, and contact angle measurements. The PCL–PDMS–PCL triblock copolymer consisted of two epoxy‐miscible PCL blocks and an epoxy‐immiscible PDMS block. The cured ER/PCL–PDMS–PCL blends showed composition‐dependent nanostructures from spherical and worm‐like microdomains to lamellar morphology. FTIR study revealed the existence of hydrogen bonding interactions between the PCL blocks and the cured epoxy, which was responsible for their miscibility. The overall crystallization rate of the PCL blocks in the blend decreased remarkably with increasing ER content, whereas the melting point was slightly depressed in the blends. The surface hydrophobicity of the cured ER increased upon addition of the block copolymer, whereas the surface free energy (γs) values decreased with increasing block copolymer concentration. The hydrophilicity of the epoxy could be reduced through blending with the PCL–PDMS–PCL block copolymer that contained a hydrophobic PDMS block. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 790–800, 2010  相似文献   

19.
Binary blends of unbranched polyethylene (PE) and 5-10% model ethylene-butene random copolymers are used to determine the effects of composition heterogeneity on phase separation in the melt, semicrystalline morphology, plane strain fracture toughness JC and tensile modulus and yield strength. Slowly cooled samples of melt-miscible blends are appreciably tougher (JC = 5.2 kJ/m2) than unblended PE (JC = 2.7 kJ/m2). A blend with the same average short chain branch concentration, but which is phase separated in the melt state, has JC= 3.3 kJ/m2; dispersed domains of amorphous polymer have little effect on toughness. Enhanced toughness is associated with nonuniform morphology formed on slow cooling “one phase” melts composed of chains with different amounts of branching. The relative number of chemically different chains, as opposed to absolute branch concentrations, seems most important. Tensile properties are relatively unaffected by blending at these levels. Results from these model blends are used to consider the properties of compositionally heterogeneous ethylene copolymers. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
The effects of the phase‐separation temperature and time on the mechanical properties and morphology of poly(methyl methacrylate)/poly(styrene‐co‐maleic anhydride with 10 wt% ethyl acrylate) (SMA) blends were studied. Two compositions (20/80 and 40/60 w/w SMA/PMMAe) were prepared with a miniature twin‐screw extruder. Compared with those of the miscible blends, the Young's modulus values of the blends increased after the phase separation of the 40/60 SMA/PMMAe blend and within the early stage of spinodal decomposition of the 20/80 SMA/PMMAe blend. The mechanical properties, in terms of the tensile strength at break and the elongation, were better for the miscible blends than for the phase‐separation blends. This was believed to be the result of changes in the composition and molecular reorganization. The changes in the phase‐separating domains of both compositions, as observed by transmission electron microscopy, had no significant influence on the tensile moduli. Detailed studies of the morphology revealed a cocontinuous structure, indicating that the blends underwent spinodal decomposition. A morphological comparison of the two compositions illustrated the validity of the level rule. The growth rate of the droplet size was determined by approximation from the light scattering data and by direct measurements with transmission electron microscopy. The discrepancies observed in the droplet size growth rate were attributed to heat variations induced by the different sample thicknesses and heat transfer during the investigation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 886–897, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号