首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary: New polymer gelators consisting of poly(propylene glycol) or poly(ethylene glycol) and L ‐lysine‐based low‐molecular‐weight gelators have been developed. These polymer gelators were synthesized according to a simple procedure with high reaction yield, and formed organogels in many organic solvents. The organogelation mechanism was proposed from the transmission electron microscopy and FTIR spectroscopy studies.

Structures of the polymer gelators synthesized here.  相似文献   


2.
Poly(ethylene terephthalate)‐co‐poly(propylene glycol) (PET‐co‐PPG) copolymers with PPG ratio ranging from 0 to 0.90 mol% were synthesized by the melt copolycondensation. The intrinsic viscosity, structure, non‐isothermal crystallization behavior, nucleation and spherulitic growth of the copolymers were investigated by Ubbelohde viscometer, Proton Nuclear Magnetic Resonance (1H‐NMR), differential scanning calorimetry, and polarized optical microscopy, respectively. The non‐isothermal crystallization process of the copolymers was analyzed by Avrami, Ozawa, Mo's, Kissinger, and Dobreva methods, respectively. The results showed that the crystallizability of PET was apparently enhanced with incorporating a small amount of PPG, which first rose and then reduced with increasing amount of PPG in the copolymers at a given cooling rate. The crystallization mechanism was a three‐dimensional growth with both instantaneous and sporadic nucleation. Particularly, PET‐co‐PPG containing 0.60 mol% PPG exhibited the highest crystallizability among all the copolymers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The complex formation between cyclodextrins (CDs) and poly(propylene glycol) (PPG) derivatives is described. β‐CD and γ‐CD formed complexes with PPG derivatives such as 1‐naphthyl (1NA), 2‐naphthyl (2NA), 3,5‐dinitrobenzoyl, and 2,4‐dinitrophenyl PPG. α‐CD did not form complexes with these PPG derivatives. Although γ‐CD gave complexes with 9‐anthryl PPG (PPG9An), β‐CD did not efficiently form complexes with PPG9An. β‐CD did not form complexes with trityl PPG, demonstrating that trityl groups were too bulky to thread a β‐CD cavity. The emission spectra of the complexes showed that β‐CD bound a single 2NA moiety in its cavity and that γ‐CD included two 2NA moieties. In contrast, γ‐CD bound a single 1NA moiety in the cavity. X‐ray diffraction studies and 1H NMR analysis showed that the CD molecules were stacked along a PPG chain to form a channel structure. The inclusion modes are discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4839–4849, 2000  相似文献   

4.
A series of multiblock poly(ether urethane)s comprising poly(ethylene glycol) (PEG), and poly(propylene glycol) (PPG) segments were synthesized. Their aqueous solutions exhibited thermogelling behavior at critical gelation concentrations (CGC) ranging from 8 to 12 wt%. The composition and structural information of the copolymers were studied by GPC and 1H NMR. The critical micellization concentration (CMC) and thermodynamic parameters for micelle formation were determined at different temperatures. The temperature response of the copolymer solutions were studied and found to be associated with the composition of the copolymers.  相似文献   

5.
用金属钾、金属钠以及氢氧化钠水溶液等方法制备聚苯乙烯负载聚乙二醇,结果表明,采用金属钾比金属钢具有更好的接枝效果,并能使反应在较低的温度下较快进行。在氢氧化钠溶液中添加少量相转移剂,如Bu4NBr,接枝效果也有所提高。以聚苯乙烯负载聚乙二醇和KI一起为催化剂,研究了溶剂、温度等因素对CO2与环氧丙烷合成碳酸亚丙酯催化活性的影响。结果表明,以甲醇为溶剂催化活性较高。研究还表明,聚苯乙烯负载聚乙二醇具有较好的热稳定性,可以在150℃下重复使用至少5次。  相似文献   

6.
The synthesis and characterization of series of segmented poly(propylene glycol) (PPG)‐based ammonium ionenes is described. Bromine end‐capped oligomers were successfully synthesized using the reaction of 6‐bromohexanoyl chloride with 1000, 2000, and 4000 g/mol PPGs. 1H NMR spectroscopy, titration studies, and matrix‐assisted laser desorption ionization‐time of flight (MALDI‐TOF) mass spectrometry revealed the difunctionality of the oligomers. First, a series of PPG‐based ammonium ionenes was synthesized from bromine end‐capped PPG oligomers and N,N,N′,N′‐tetramethyl‐1,6‐hexanediamine. For this series, a single glass transition temperature (Tg) of approximately ?66 °C was observed through differential scanning calorimetry (DSC); dynamic mechanical analysis (DMA) showed the onset of flow ranged from 20 to 80 °C. In addition, a series of PPG‐based ammonium ionenes containing 1,12‐dibromododecane was synthesized to increase the aliphatic hard segment (HS) content and enhance the mechanical properties of the resulting materials. For these, two Tg's were observed using DMA; DMA also showed the onset of flow of ionenes containing higher HS content (33 wt %) occurred in the range of 100–140 °C. Tensile analysis for these ionenes demonstrated an average tensile strength at break ranging from 0.2 to 2.4 MPa. Small angle X‐ray scattering (SAXS) profiles for these ionenes showed that Bragg distances increase linearly with the molecular weight of PPG soft segment. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4159–4167, 2010  相似文献   

7.
Stable to atmospheric moisture, adhesive and transparent polymer electrolytes have been prepared by blending poly(methyl methacrylate) (PMMA) with poly(propylene glycol)-425/LiCF3SO3 complexes. The blending of the polymers has been achieved by a method developed in our laboratory: free radical polymerization of methylmethacrylate in the polyether/salt matrix. A series of polymer blend complexes varying in PMMA content (up to 20% by weight) and oxygen/metal ratios (25, 16, and 8) have been synthesized and their properties studied. All the samples prepared in this study were found to be optically clear unlike the higher molecular weight poly(propylene glycol)-2000 (PPG-2000) system which required a minimum salt concentration to compatibilize a specific amount of PMMA with PPG. The mechanisms by which the salt holds the otherwise incompatible polymers together in a single phase have been investigated by FT-IR. Our studies show a weak coupling of the ether oxygens in the PPG with the ester groups of the PMMA through the lithium cations. Discrete changes has been observed in the FT-IR spectrum of PMMA when doped with the lithium salt hitherto unnoticed with other dopants. Gel permeation chromatography results of the PMMA samples isolated from the solid electrolytes indicate the molecular weight to vary between 43000 and 121000 with relatively narrow distributions, 1.6?2.0. The ionic conductivities of the polymer blend electrolytes were fairly high (10?5 S/cm) at room temperature. The PMMA neither significantly influenced the Tg of the blend complexes nor effected the ionic conductivities drastically. The ionic conductivity as a function of temperature followed the empirical Vogel-Tammann-Fulcher equation. The blending of PMMA with PPG/LiCF3SO3 complexes was found to impart good adhesiveness to the solid electrolytes while making them stable to atmospheric moisture. © 1992 John Wiley & Sons, Inc.  相似文献   

8.
A series of amphiphilic triblock copolymers, methoxy poly(ethylene glycol)‐b‐poly(octadecanoic anhydride)‐b‐methoxy poly(ethylene glycol) (mPEG‐b‐POA‐b‐mPEG), were prepared via melt polycondensation of methoxy poly(ethylene glycol) (mPEG) and poly(octadecanoic anhydride) (POA). mPEG‐b‐POA‐b‐mPEG were characterized by FTIR, 1H‐NMR, GPC, DSC, and XRD. Drug‐loaded mPEG‐b‐POA‐b‐mPEG nanoparticles (NPs) with spherical morphology and narrow size polydispersity index were prepared by nanoprecipitation technique with paclitaxel as the model drug. In vitro release behaviors of drug‐loaded NPs present that the biphasic process and the release mechanism of each phase are zero order drug releases. According to this study, mPEG‐b‐POA‐b‐mPEG NPs could serve as suitable delivery agents for paclitaxel and other hydrophobic drugs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Poly(trimethylene terephthalate)/poly(propylene glycol) (PTT/PPG) segmented random copolymers were synthesized by melt copolycondensation. The weight fraction of PPG blocks was ranged from 12.1 to 33.4 wt%, which was confirmed by 1H NMR spectroscopy. The result of wide‐angle X‐ray diffractometer indicated that all copolymers had the same crystal structure of PTT homopolymer at room temperature. At a determined crystallization temperature, ring‐banded spherulites could be observed in all copolymers samples, and the band spacing increased with the increase of PPG content. Morphologies of copolymers after nonisothermal crystallization process were strongly depended on the cooling rate. Well‐defined ring‐banded spherulites can be observed only at moderate cooling (20°C/min), while it was really hard to be observed at too low (2.5°C/min) or too high (by air‐quenching) cooling rate. Moreover, the size of spherulites decreased with the increase of cooling rate. Finally, different nonisothermal crystallization kinetics were adopt to analyze this copolymer system, and only the Mo method was suitable to describe this copolymer system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
We investigated the compatibility of blends of 1,4‐rich polyisoprene (1,4‐PI) and poly(4‐n‐alkylstyrene)s with six kinds of n‐alkyl side groups, that is, methyl, ethyl, propyl, butyl, hexyl, and octyl focusing on carbon number of alkyl groups. Poly(4‐methylstyrene)/1,4‐PI blend was turned out to be immiscible at all temperature range adopted in this work and poly(4‐ethylstyrene)/1,4‐PI blend revealed UCST type phase behavior, while the others were found to be compatible. The phase diagrams of poly(4‐ethylstyrene)/1,4‐PI blends were obtained by optical microscopy, and the temperature dependence of the Flory‐Huggins interaction parameter χ has been estimated to be χ = ?0.036 + 24/T by applying lattice theory, where T is the absolute temperature. From this relationship χ value at room temperature (298 K) was calculated to be 0.045, the value is reasonably low for miscible polymers system. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1791–1797  相似文献   

11.
Biodegradable star‐shaped poly(ethylene glycol)‐block‐poly(lactide) copolymers were synthesized by ring‐opening polymerization of lactide, using star poly(ethylene glycol) as an initiator and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature. Two series of three‐ and four‐armed PEG‐PLA copolymers were synthesized and characterized by gel permeation chromatography (GPC) as well as 1H and 13C NMR spectroscopy. The polymerization under the used conditions is very fast, yielding copolymers of controlled molecular weight and tailored molecular architecture. The chemical structure of the copolymers investigated by 1H and 13C NMR indicates the formation of block copolymers. The monomodal profile of molecular weight distribution by GPC provided further evidence of controlled and defined star‐shaped copolymers as well as the absence of cyclic oligomeric species. The effects of copolymer composition and lactide stereochemistry on the physical properties were investigated by GPC and differential scanning calorimetry. For the same PLA chain length, the materials obtained in the case of linear copolymers are more viscous, whereas in the case of star copolymer, solid materials are obtained with reduction in their Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3966–3974, 2007  相似文献   

12.
The synthesis of amino-terminated telechelic poly(propylene glycol) and polyisobutylene from their corresponding dihydroxy-terminated derivatives was studied. The synthesis of these aminotelechelics was achieved by the coupling of imidazolylformates with ethylenediamine. The structure of the resulting amino-functionalized polymers was determined by 1H NMR, 13C NMR, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. On the basis of the spectroscopic and spectrometric results, a complete conversion of dihydroxy termini into diamino end groups was observed; that is, the number-average functionality was found to be 2. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 587–596, 2004  相似文献   

13.
Broadband dielectric spectroscopy was used to study the segmental (α) and secondary (β) relaxations in hydrogen‐bonded poly(4‐vinylphenol)/poly(methyl methacrylate) (PVPh/PMMA) blends with PVPh concentrations of 20–80% and at temperatures from ?30 to approximately glass‐transition temperature (Tg) + 80 °C. Miscible blends were obtained by solution casting from methyl ethyl ketone solution, as confirmed by single differential scanning calorimetry Tg and single segmental relaxation process for each blend. The β relaxation of PMMA maintains similar characteristics in blends with PVPh, compared with neat PMMA. Its relaxation time and activation energy are nearly the same in all blends. Furthermore, the dielectric relaxation strength of PMMA β process in the blends is proportional to the concentration of PMMA, suggesting that blending and intermolecular hydrogen bonding do not modify the local intramolecular motion. The α process, however, represents the segmental motions of both components and becomes slower with increasing PVPh concentration because of the higher Tg. This leads to well‐defined α and β relaxations in the blends above the corresponding Tg, which cannot be reliably resolved in neat PMMA without ambiguous curve deconvolution. The PMMA β process still follows an Arrhenius temperature dependence above Tg, but with an activation energy larger than that observed below Tg because of increased relaxation amplitude. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3405–3415, 2004  相似文献   

14.
15.
《先进技术聚合物》2018,29(1):205-215
In this work, a series of PLGA‐PEG diblock copolymers were synthesized by ring‐opening polymerization of L‐lactide and glycolide using mPEG as macroinitiator and stannous octoate as catalyst. Spherical micelles were obtained from the various copolymers by using co‐solvent evaporation method. The biocompatibility of micelles was evaluated with the aim of assessing their potential in the development of drug delivery systems. Various aspects of biocompatibility were considered, including MTT assay, agar diffusion test, release of cytokines, hemolytic test, dynamic clotting time, protein adsorption in vitro, and zebrafish embryonic compatibility in vivo. The combined results revealed that the micelles present good cytocompatibility and hemocompatibility in vitro. Moreover, the cumulative effects of micelles throughout embryos developing stages have no toxicity in vivo. It is thus concluded that micelles prepared from PLGA‐PEG copolymers present good biocompatibility as potential drug carrier.  相似文献   

16.
Triblock copolymers of poly(styrenesulfonate)‐b‐poly(ethylene glycol)‐b‐poly(styrenesulfonate) with narrow molecular weight distribution (Mw/Mn = 1.28–1.40) and well‐defined structure have been synthesized in aqueous solution at 70 °C via reversible addition‐fragmentation chain transfer polymerization. Poly(ethylene glycol) (PEG) capped with 4‐cyanopentanoic acid dithiobenzoate end groups was used as the macro chain transfer agent (PEG macro‐CTA) for sole monomer sodium 4‐styrenesulfonate. The reaction was controllable and displayed living polymerization characteristics and the triblock copolymer had designed molecular weight. The reaction rate depended strongly on the CTA and initiator concentration ratio [CTA]0/[ACPA]0: an increase in [CTA]0/[ACPA]0 from 1.0 to 5.0 slowed down the polymerization rate and improved the molecular weight distribution with a prolonged induction time. The polymerization proceeded, following first‐order kinetics when [CTA]0/[ACPA]0 = 2.5 and 5.0. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3698–3706, 2007  相似文献   

17.
Graft copolymers consisting of amorphous main chain, poly(methyl methacrylate) (PMMA), or poly(methyl acrylate) (PMAc), and crystalline side chains, poly(ethylene glycol) (PEG), have been prepared by copolymerization of PEG macromonomers with methyl methacrylate or methyl acrylate (MMAx or MACx, respectively). Because of the compatibility of PMMA/PEG and PMAc/PEG, from small‐angle X‐ray scattering results, the main and side chains in graft copolymers were suggested to be homogeneous in the molten state. Differential scanning calorimetry (DSC) cooling scans revealed that PEG side chains for graft copolymers with large PEG fractions were crystallized when the sample was cooled, with a cooling rate of 10 °C/min. The spherulite pattern observed by a polarized optical microscope suggested the growth of PEG crystalline lamellae. Crystallization of PEG in MMAx was more restrained than in MACx. From these results, we have concluded that the crystallization behavior of the grafted side chains is strongly influenced by the glass transition of a homogeneously molten sample as well as dilution of the crystallizable chains. Domain spacings for isothermally crystallized graft copolymers were described by interdigitating chain packing in crystalline–amorphous lamellar structure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 79–86, 2005  相似文献   

18.
Poly(1,2‐propylene succinate) (PPS) having high molecular weight can be synthesized by multi‐step melt‐polycondensation of succinic acid (SA) and 1,2‐propylene glycol (PG) with various catalysts. The first step is noncatalytic esterification/oligomerization of the two monomers, followed by the second step of catalytic melt‐polycondensation. In this step, co‐catalyst systems of Zn(AcO)2/Ge(OBu)4 and Zn(AcO)2/Ti(BuO)4 are effective for obtaining PPS having middle molecular weights (>10.0 kDa). This middle‐molecular‐weight PPS is chain‐elongated in the third‐step polycondensation with Zn(AcO)2 as the catalyst to obtain a molecular weight reaching 120 kDa. As verified by 1H‐ and 13C‐NMR spectra combined with two‐dimensional experiments, PPS has a ω‐bis‐hydroxy structure where the PG units leave the secondary hydroxyl terminals in larger ratio than the primary hydroxyl terminals. The PPS polymers are amorphous in nature, showing Tg around −4 °C. PPS can be solution‐ and melt‐blended with poly(l ‐lactide) (PLLA). By melt‐blending a high‐molecular‐weight PPS in an amount of 7.5–15 wt %, the modulus of the PLLA films decreases below 2000 MPa and the tear strength increases twice, supporting the effectiveness of PPS polymer in imparting flexible nature to PLLA. PPS polymers can therefore be applicable as elastomeric or flexible plastic modifiers having a 100 % biobased content. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1795–1805  相似文献   

19.
Poly(propylene/neopenthyl terephthalate) random copolymers (PPT‐PNT) and poly(neopenthyl terephthalate) (PNT) were synthesized and subjected to molecular characterization. Afterwards, the polyesters were examined by TGA, DSC, andX‐ray. The copolymers, which displayed a good thermal stability, at room temperature appeared as semicrystalline materials: the main effect of copolymerization was a lowering in the amount of crystallinity and a decrease of the melting temperature with respect to homopolymer PPT. XRD measurements allowed the identification of the PPT crystalline structure in all cases. Amorphous samples were obtained after melt quenching, with the exception of PPT‐PNT5, and an increment of Tg as the content of NT units is increased was observed due to the effect of the side methylene groups in the polymeric chain. The Wood equation described well Tg‐composition data. Lastly, the presence of a rigid‐amorphous phase was evidenced in the copolymers, whose amount depended on composition and on thermal treatment. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 170–181, 2008  相似文献   

20.
In this study, a novel drug‐carrying micelle composed of methoxy poly(ethylene glycol) (mPEG)‐b‐poly(L‐lactic acid) (PLLA) with gas‐forming carbonate linkage was fabricated. Here, the gas‐forming carbonate linkage was formed by the chemical coupling of the terminal hydroxyl group of the PLLA block and benzyl chloroformate (BC). mPEG‐b‐PLLA‐BC was self‐organized in aqueous solution: the PEG block on the hydrophilic outer shell and the PLLA‐BC block in the hydrophoboic innor core. The cleavage of carbonate linkage by hydrolysis and formation of carbon dioxide nanobubbles in the micellar core enabled an accelerated release of the encapsulated anticancer drug (doxorubicin: DOX) from the mPEG‐b‐PLLA‐BC micelles. The amount of drug (DOX) released from the mPEG‐b‐PLLA‐BC micelle was higher than that from the conventional mPEG‐b‐PLLA micelle, which allowed for increased in vitro toxicity against KB tumor cells. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号