首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Free‐radical copolymerization of glycidyl methacrylate (GMA) with N‐vinylpyrrolidone (VPD) was carried out at 50 °C using 3.0 mol · L?1 of N,N′‐dimethylformamide solution and 9.0 · 10?3 mol · L?1 of 2,2′‐azobisisobutyronitrile as an initiator. The modification reaction of GMA‐VPD copolymers with a model bioactive carboxylic acid, 6‐methoxy‐α‐methyl‐2‐naphthaleneacetic acid (naproxen), was studied in the homogeneous phase using basic catalysts. The influence of the type of catalyst and the GMA content was evaluated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1192–1199, 2002  相似文献   

2.
Statistical copolymers of 2‐hydroxyethyl methacrylate (HEMA) and 2‐diethylaminoethyl methacrylate (DEA) were synthesized at 50 °C by free‐radical copolymerization in bulk and in a 3 mol L?1 N,N′‐dimethylformamide solution with 2,2′‐azobisisobutyronitrile as an initiator. The solvent effect on the apparent monomer reactivity ratios was attributed to the different aggregation states of HEMA monomer in the different solvents. The copolymers obtained were water‐insoluble at a neutral pH but soluble in an acidic medium when the molar fraction of the DEA content was higher than 0.5. The quaternization of DEA residues increased the hydrophilic character of the copolymers, and they became water‐soluble at a neutral pH when the HEMA content was lower than 0.25. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2427–2434, 2002  相似文献   

3.
This work deals with design of maleimide monomer toward more precise control of alternating sequence for radical copolymerization with styrene. Crucial in this study is sequence analysis by MALDI‐TOF‐MS for resultant copolymers that was obtained via ruthenium‐catalyzed living radical copolymerization with a malonate‐based alkyl halide initiator showing selective initiation ability. The copolymers of a simple N‐alkyl maleimide [e.g., N‐ethyl maleimide (EMI)] with styrene gave complicated peak patterns for the MALDI‐TOF‐MS spectra indicating low degree of alternating sequence, in contrary to expectation from the reactivity ratios (almost zero). A simple substitution of methyl group (CH3) of EMI with trifluoromethyl (CF3: CF3‐MI) made the peak patterns much simpler giving the copolymer with higher alternating sequence. More interestingly, the peak interval of the copolymer at earlier polymerization stage was equal to sum of the molecular weights of CF3‐MI and styrene, suggesting possibility of the pair propagation of the monomers. Indeed, 1H NMR analyses of the mixture of maleimide with styrene suggested stronger interaction of CF3‐MI than EMI. Based on the results, maleimide derivatives carrying a substituent‐designable electron‐withdrawing group [ROC(?O)N–: R = substituent] were newly designed toward incorporation of functional side chains. They also gave higher alternating sequence for the copolymerization with styrene. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 367–375  相似文献   

4.
1,2,4,5‐Tetramethyltetrahydrodiarsenine ( 1 ), a cyclic diarsine compound, was stirred with styrene and a catalytic amount of 2,2′‐azobisisobutyronitrile (AIBN) as a radical initiator at 80 °C for 8 h in toluene to give a copolymer containing arsenic atoms in the backbone. The gel permeation chromatography (GPC) chromatogram of the copolymer showed a single peak. The number‐average molecular weight of the copolymer was estimated to be more than 10,000 by GPC analysis (CHCl3, polystyrene standards). The structure of the copolymer was confirmed by the 1H NMR and 13C NMR spectra. According to the integral ratio of peaks in the 1H‐NMR spectrum, the content of 1 in the copolymer was smaller compared to the monomer feed ratio of 1 . Radical copolymerization of 1 with methyl methacrylate also provided the corresponding copolymer in the presence of AIBN, whereas copolymerization with vinyl acetate yielded no polymeric material. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3023–3028, 2004  相似文献   

5.
This investigation reports the atom transfer radical copolymerization (ATRcP) of glycidyl methacrylate (GMA) and 2‐ethylhexyl acrylate (EHA). Poly(glycidyl methacrylate) (PGMA) has easily transformable pendant oxirane group and poly(2‐ethylhexyl acrylate) (PEHA) has very low Tg. They are the important components of coating and adhesive materials. Copolymerization of GMA and EHA was carried out in bulk and in toluene at 70 °C at different molar feed ratios using CuCl as catalyst in combination with 2,2′‐bypyridine (bpy) as well as N,N,N′,N″,N″‐pentamethyl diethylenetriamine (PMDETA) as ligand. The molecular weight (Mn) and the polydispersity index (PDI) of the polymers were determined by GPC analysis. The molar composition of the copolymers was determined by 1H NMR analysis. The reactivity ratios of GMA (r1) and EHA (r2) were determined using Finemann‐Ross and Kelen‐Tudos linearization methods and those had been compared with the literature values for conventional free radical copolymerization. The thermal properties of the copolymers were studied by DSC and TGA analysis. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6526–6533, 2009  相似文献   

6.
The radical copolymerization of cyclohexene (M1) and N‐cyclohexylmaleimide (M2) was carried out with 2,2′‐azobis(isobutyronitrile) as an initiator in various solvents at 55°C. The copolymerization of cyclohexene with N‐cyclohexylmaleimide in chloroform, dioxane and benzene proceeded in a homogeneous system to give an alternating copolymer when the monomer of cyclohexene was over 40 mol% in the feed. It was found that the initial rate of the copolymerization (Rp), as well as the number‐average molecular weight of copolymers, were dependent on the monomer composition and was at maximum at about 30 mol% of cyclohexene in the feed. The effects of solvents on the Rp and reactivity ratios were also investigated in this copolymerization system. The copolymerization in dioxane produced a higher Rp than that in chloroform and benzene, and the monomer reactivity ratios were found to be r1=0, r2=0.032 in chloroform; r1=0, r2=0.065 in benzene and r1=0, r2=0.14 in dioxane, respectively.  相似文献   

7.
The radical copolymerization of vinylidene fluoride (VDF) and 1‐bromo‐2,2‐difluoroethylene (BDFE) in 1,1,1,3,3‐pentafluorobutane solution at different monomer molar ratios (ranging from 96/4 to 25/75 mol %) and initiated by tert‐butylperoxypivalate (TBPPI, mainly) is presented. Poly(VDF‐co‐BDFE) copolymers of various aspects (from white powders to yellow viscous liquids) were produced depending on the copolymer compositions. The microstructures of the obtained copolymers were characterized by 19F and 1H NMR spectroscopy and by elementary analysis and these techniques enabled one to assess the contents of both comonomers in the produced copolymers. VDF was shown to be more incorporated in the copolymer than BDFE. From the extended Kelen and Tudos method, the kinetics of the radical copolymerization led to the determination of the reactivity ratios, ri, of both comonomers (rVDF = 1.20 ± 0.50 and rBDFE = 0.40 ± 0.15 at 75 °C) showing that VDF is more reactive than BDFE. Alfrey‐Price's Q and e values of BDFE monomer were calculated to be 0.009 (from QVDF = 0.008) or 0.019 (from QVDF = 0.015) and +1.22 (vs. eVDF = 0.40) or +1.37 (vs. eVDF = 0.50), respectively, indicating that BDFE is an electron‐accepting monomer. Statistic cooligomers were produced with molar masses ranging from 1,800 to 5,500 g/mol (assessed by GPC with polystyrene standards). A further evidence of the successful copolymerization was shown by the selective reduction of bromine atoms in poly(VDF‐co‐BDFE) cooligomers that led to analog PVDF. The thermal properties of the poly(VDF‐co‐BDFE) cooligomers were also determined and those containing a high VDF amount exhibited a high thermal stability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3964–3976, 2010.  相似文献   

8.
Copolymers of a liquid crystalline monomer, 2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene (MPCS), with St and MMA were prepared by free radical polymerization at low conversion in chlorobenzene with 2,2′‐azobisisobutyronitrile (AIBN) as initiator. The copolymers of poly(MPCS‐co‐St) and poly(MPCS‐co‐MMA) were characterized by 1H NMR and GPC. The monomer reactivity ratios were determined by using the extended Kelen–Tudos (EKT) method. Structural parameters of the copolymers were obtained from the possibility statistics and monomer reactivity ratios. The influence of MPCS content in copolymers on the glass transition temperatures of copolymers was investigated by DSC. The thermal stabilities of the two copolymer systems increased with an increase of the molar fraction of MPCS in the copolymers. The liquid crystalline behavior of the copolymers was also investigated using DSC and POM. The results revealed that the copolymers with high MPCS molar contents exhibited liquid crystalline behaviors. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2666–2674, 2005  相似文献   

9.
This article describes the homopolymerization of isocyanatoethyl methacrylate (IEM) and its copolymerization with methyl methacrylate (MMA) in acetonitrile in the presence of 2,2′‐azobisisobutyronitrile. The constant characteristic of IEM polymerizability (kp2/kte = 128 × 10?3 L mol?1 s?1, where kp is the propagation constant and kte is the termination constant) was determined. The study of IEM reactivity toward MMA gave ratios of 0.88 and 1.20 for IEM and MMA, respectively. The physicochemical properties of the IEM homopolymer and IEM/MMA copolymers were also studied. The glass‐transition temperature of poly(isocyanatoethyl methacrylate) was found to be 47 °C. From the thermogravimetric analysis of the weight‐loss percentage corresponding to the first wave of the thermogram, it was shown that the degradation mechanism of the IEM/MMA copolymers started from the isocyanate group. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4762–4768, 2006  相似文献   

10.
A surface‐active p‐vinyl benzyloxy‐ω‐hydroxy‐poly(ethylene oxide) macromonomer containing 22 pendant structural units of ethylene oxide (St–PEO22) was synthesized with an initiation method. Because of its solubility in a large variety of solvents, the free‐radical copolymerization with electron‐acceptor N‐phenylmaleimide (NPMI) was performed at 60 °C in benzene and tetrahydrofuran (THF) as isotropic media and in a water–THF mixture or water as a heterogeneous medium. Oil‐soluble 2,2′‐azobisisobutyronitrile and water‐soluble 4,4′‐azobis(4‐cyanovaleric acid) were used as the initiators at fixed concentrations. Two different St–PEO22/NPMI comonomer ratios (1/1 and 3/7) at a fixed total comonomer concentration in the polymerization system were used. The structures, compositions, and microstructure peculiarities of the obtained alternating, amphiphilic, comblike copolymers were determined by NMR analysis. For the copolymers synthesized in hydrophilic media, differential scanning calorimetry showed, near the endothermic peak attributed to the melting of the poly(ethylene oxide) side chains, the presence of a second peak due to the partially ordered phase that could exist between the crystalline state and the isotropic melt. Also, the thermal stability of the obtained copolymers was studied with thermogravimetric analysis. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 479–492, 2005  相似文献   

11.
Amphiphilic graft copolymers were prepared via the radical copolymerization of poly(ethylene oxide) (PEO) macromonomers with fluorocarbon or hydrocarbon acrylates in toluene with 2,2′‐azobisisobutyronitrile (AIBN) as an initiator. 1H NMR spectroscopy confirmed that the composition of the graft copolymers corresponded well to the monomer feed. For gel electrolytes prepared from the amphiphilic copolymers, the nature of the ionophobic parts of the amphiphilic graft copolymers had a great influence on the ion conductivity. Gel electrolytes based on graft copolymers containing fluorocarbon side chains showed significantly higher ion conductivity than electrolytes based on graft copolymers containing hydrocarbon groups. The ambient‐temperature ion conductivity was about 2.6 mS/cm at 20 °C for a gel electrolyte based on an amphiphilic graft copolymer consisting of an acrylate backbone carrying PEO and fluorocarbon side chains. Corresponding gels based on graft copolymers with PEO side chains and hydrocarbon groups showed an ambient‐temperature ion conductivity of about 1.2 mS/cm. The gel electrolytes contained 30 wt % copolymer and 70 wt % 1 M LiPF6 in an ethylene carbonate/γ‐butyrolactone (2/1 w/w) mixture. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2223–2232, 2001  相似文献   

12.
The controlled nitroxide‐mediated homopolymerization of 9‐(4‐vinylbenzyl)‐9H‐carbazole (VBK) and the copolymerization of methyl methacrylate (MMA) with varying amounts of VBK were accomplished by using 10 mol % {tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino} nitroxide relative to 2‐({tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino}oxy)‐2‐methylpropionic acid (BlocBuilder?) in dimethylformamide at temperatures from 80 to 125 °C. As little as 1 mol % of VBK in the feed was required to obtain a controlled copolymerization of an MMA/VBK mixture, resulting in a linear increase in molecular weight versus conversion with a narrow molecular weight distribution (Mw /Mn ≈ 1.3). Preferential incorporation of VBK into the copolymer was indicated by the MMA/VBK reactivity ratios determined: rVBK = 2.7 ± 1.5 and rMMA = 0.24 ± 0.14. The copolymers were found significantly “living” by performing subsequent chain extensions with a fresh batch of VBK and by 31P NMR spectroscopy analysis. VBK was found to be an effective controlling comonomer for NMP of MMA, and such low levels of VBK comonomer ensured transparency in the final copolymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
A series of amphiphilic cationic random copolymers, namely poly[2‐(methacryloyloxy)ethyl trimethylammonium chloride‐co‐stearyl methacrylate] or poly(MADQUAT‐co‐SMA), have been synthesized via conventional free‐radical copolymerization using 2,2′‐azobisisobutyronitrile (AIBN) as initiator and n‐dodecanethiol as chain transfer agent. The resultant products were then characterized by FT‐IR, 1H NMR, MALDI‐TOF MS measurements. From the number‐average molecular weights of the copolymers, we can conclude that these copolymers have oligomeric structure with a limited number of hydrophilic and hydrophobic moieties in a short polymer chain. The reactivity ratios (rMADQUAT = 0.83, rSMA = 0.25) between the hydrophilic MADQUAT monomer and the hydrophobic SMA monomer were calculated by the Finemann and Ross method, which was based on the results of 1H NMR analysis. The surface activity of the random copolymers was studied by the combination of surface tension and contact angle measurement, and the results indicated that these copolymers possess relatively high surface activity. The critical aggregation concentrations (cac) of the copolymers in aqueous solution were determined by fluorescence probe method as well as surface tension measurement. The different nanoparticles of poly(MADQUAT‐co‐SMA) copolymers formed in pure water or ethanol‐water mixture were proved by the particle size and size distribution in the measurement of dynamic light scattering (DLS). Furthermore, using transmission electron microscopy (TEM), we could observe various self‐assembly morphologies of these random copolymer. All these results show that the amphiphilic cationic random copolymers have a good self‐assembly behavior, even if they are ill‐defined copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4670–4684, 2009  相似文献   

14.
The radical ring‐opening copolymerization of 2‐isopropenyl‐3‐phenyloxirane (1) with styrene (St) was examined to obtain the copolymer [copoly(1‐St)] with a vinyl ether moiety in the main chain. The copolymers were obtained in moderate yields by copolymerization in various feed ratios of 1 and St over 120 °C; the number‐average molecular weights (Mn) were estimated to be 1800–4200 by gel permeation chromatography analysis. The ratio of the vinyl ether and St units of copoly(1‐St) was estimated with the 1H NMR spectra and varied from 1/7 to 1/14 according to the initial feed ratio of 1 and St. The haloalkoxylation of copoly(1‐St) with ethylene glycol in the presence of N‐chlorosuccinimide produced a new copolymer with alcohol groups and chlorine atoms in the side group in a high yield. The Mn value of the haloalkoxylated polymer was almost the same as that of the starting copoly(1‐St). The incorporated halogen was determined by elemental analysis. The analytical result indicated that over 88% of the vinyl ether groups participated in the haloalkoxylation. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3729–3735, 2000  相似文献   

15.
The synthesis of [1‐(fluoromethyl)vinyl]benzene (or α‐(fluoromethyl)styrene, FMB) and its radical copolymerization with chlorotrifluorethylene (CTFE), initiated by tert‐butyl peroxypivalate (TBPPi) are presented. The allyl monomer [H2C = C(CH2F)C6H5] was obtained by electrophilic fluorodesilylation of trimethyl(2‐phenylprop‐2‐en‐1‐yl)silane in 93% yield. A series of seven copolymerization reactions were carried out starting from initial [CTFE]0/([FMB]0 + [CTFE]0) molar ratios ranging from 19.6 to 90.0 mol %. The molar compositions of the obtained poly(CTFE‐co‐FMB) copolymers were assessed by means of 19F nuclear magnetic resonance spectroscopy. Statistic copolymers were produced with molar masses ranging between 13,800 and 25,600 g/mol. From the Kelen and Tudos method, the kinetics of the copolymerization led to the determination of the reactivity ratios, ri, of both comonomers (rCTFE = 0.4 ± 0.2 and rFMB = 3.7 ± 1.8 at 74 °C) showing that FMB is more reactive than CTFE as well as other halogenated or nonhalogenated monomers involved in the radical copolymerization with CTFE. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3843–3850, 2007  相似文献   

16.
Controlled free‐radical copolymerization of styrene (S) and butyl acrylate (BA) was achieved by using a second‐generation nitroxide, Ntert‐butyl‐N‐[1‐diethylphosphono‐(2,2‐dimethylpropyl)] nitroxide (DEPN), and 2,2‐azobisisobutyronitrile (AIBN) at 120 °C. The time‐conversion first‐order plot was linear, and the number‐average molecular weight increased in direct proportion to the ratio of monomer conversion to the initial concentration, providing copolymers with low polydispersity. The monomer reactivity ratios obtained were rS = 0.74 and rBA = 0.29, respectively. To analyze the convenience of applying the Mayo–Lewis terminal model, the cumulative copolymer composition against conversion and the individual conversion of each monomer as a function of copolymerization time were studied. The theoretical values of the propagating radical concentration ratio were also examined to investigate the copolymerization rate behavior. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4168–4176, 2004  相似文献   

17.
We report the monomer reactivity ratios for copolymers of methyl methacrylate (MMA) and a reactive monomer, 2‐vinyl‐4,4′‐dimethylazlactone (VDMA), using the Fineman–Ross, inverted Fineman–Ross, Kelen–Tudos, extended Kelen–Tudos, and Tidwell–Mortimer methods at low and high polymer conversions. Copolymers were obtained by radical polymerization initiated by 2,2′‐azobisisobutyronitrile in methyl ethyl ketone solutions and were analyzed by NMR, gas chromatography (GC), and gel permeation chromatography. 1H NMR analysis was used to determine the molar fractions of MMA and VDMA in the copolymers at both low and high conversions. GC analysis determined the molar fractions of the monomers at conversions of less than 27% and greater than 65% for the low‐ and high‐conversion copolymers, respectively. The reactivity ratios indicated a tendency toward random copolymerization, with a higher rate of consumption of VDMA at high conversions. For both low‐ and high‐conversion copolymers, the molecular weights increased with increasing molar fractions of VDMA, and this was consistent with the faster consumption of VDMA (compared with that of MMA). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3027–3037, 2003  相似文献   

18.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

19.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

20.
The controlled/living radical polymerization of vinyl acetate (VAc) and its copolymerization with methyl acrylate (MA) were investigated in bulk or fluoroalcohols using manganese complex [Mn2(CO)10] in conjunction with an alkyl iodide (R? I) as an initiator under weak visible light. The manganese complex induced the controlled/living radical polymerization of VAc even in the fluoroalcohols without any loss of activity. The R? I/Mn2(CO)10 system was also effective for the copolymerization of MA and VAc, in which MA was consumed faster than VAc, and then the remaining VAc was continuously and quantitatively consumed after the complete consumption of MA. The 1H and 13C NMR analyses revealed that the obtained products are block copolymers consisting of gradient MA/VAc segments, in which the VAc content gradually increases, and homopoly(VAc). The use of fluoroalcohols as solvents increased the copolymerization rate, controllability of the molecular weights, and copolymerizability of VAc. The saponification of the VAc units in poly(MA‐grad‐VAc)‐block‐poly(VAc) resulted in the corresponding poly(MA‐co‐γ‐lactone)‐block‐poly(vinyl alcohol) due to the intramolecular cyclization between the hydroxyl and neighboring carboxyl groups in the gradient segments. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1343–1353, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号