首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a nonconventional Eulerian‐Lagrangian single‐node collocation method (ELSCM) with piecewise‐cubic Hermite polynomials as basis functions for the numerical simulation to unsteady‐state advection‐diffusion transport partial differential equations. This method greatly reduces the number of unknowns in the conventional collocation method, and generates accurate numerical solutions even if very large time steps are taken. The method is relatively easy to formulate. Numerical experiments are presented to show the strong potential of this method. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 271–283, 2003.  相似文献   

2.
We develop a nonconventional single‐node characteristic collocation method with piecewise‐cubic Hermite polynomials for the numerical simulation to unsteady‐state advection‐diffusion transport partial differential equations. This method greatly reduces the number of unknowns in the conventional collocation method, and generates accurate numerical solutions even if very large time steps are taken. The reduction of number of nodes has great potential for problems defined on high space dimensions, which appears in such problems as quantification of uncertainties in subsurface porous media. The method developed here is easy to formulate. Numerical experiments are presented to show the strong potential of the method. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 786–802, 2011  相似文献   

3.
We present the method of lines (MOL), which is based on the spectral collocation method, to solve space‐fractional advection‐diffusion equations (SFADEs) on a finite domain with variable coefficients. We focus on the cases in which the SFADEs consist of both left‐ and right‐sided fractional derivatives. To do so, we begin by introducing a new set of basis functions with some interesting features. The MOL, together with the spectral collocation method based on the new basis functions, are successfully applied to the SFADEs. Finally, four numerical examples, including benchmark problems and a problem with discontinuous advection and diffusion coefficients, are provided to illustrate the efficiency and exponentially accuracy of the proposed method.  相似文献   

4.
We develop a mass conservative Eulerian‐Lagrangian control volume scheme (ELCVS) for the solution of the transient advection‐diffusion equations in two space dimensions. This method uses finite volume test functions over the space‐time domain defined by the characteristics within the framework of the class of Eulerian‐Lagrangian localized adjoint characteristic methods (ELLAM). It, therefore, maintains the advantages of characteristic methods in general, and of this class in particular, which include global mass conservation as well as a natural treatment of all types of boundary conditions. However, it differs from other methods in that class in the treatment of the mass storage integrals at the previous time step defined on deformed Lagrangian regions. This treatment is especially attractive for orthogonal rectangular Eulerian grids composed of block elements. In the algorithm, each deformed region is approximated by an eight‐node region with sides drawn parallel to the Eulerian grid, which significantly simplifies the integration compared with the approach used in finite volume ELLAM methods, based on backward tracking, while retaining local mass conservation at no additional expenses in terms of accuracy or CPU consumption. This is verified by numerical tests which show that ELCVS performs as well as standard finite volume ELLAM methods, which have previously been shown to outperform many other well‐received classes of numerical methods for the equations considered. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2012  相似文献   

5.
We introduce finite‐difference schemes based on a special upwind‐type collocation grid, in order to obtain approximations of the solution of linear transport‐dominated advection‐diffusion problems. The method is well suited when the diffusion parameter is very small compared to the discretization parameter. A theory is developed and many numerical experiments are shown. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

6.
The advection‐diffusion equation has a long history as a benchmark for numerical methods. Taylor‐Galerkin methods are used together with the type of splines known as B‐splines to construct the approximation functions over the finite elements for the solution of time‐dependent advection‐diffusion problems. If advection dominates over diffusion, the numerical solution is difficult especially if boundary layers are to be resolved. Known test problems have been studied to demonstrate the accuracy of the method. Numerical results show the behavior of the method with emphasis on treatment of boundary conditions. Taylor‐Galerkin methods have been constructed by using both linear and quadratic B‐spline shape functions. Results shown by the method are found to be in good agreement with the exact solution. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

7.
In this paper, we study the numerical solution to time‐fractional partial differential equations with variable coefficients that involve temporal Caputo derivative. A spectral method based on Gegenbauer polynomials is taken for approximating the solution of the given time‐fractional partial differential equation in time and a collocation method in space. The suggested method reduces this type of equation to the solution of a linear algebraic system. Finally, some numerical examples are presented to illustrate the efficiency and accuracy of the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
We develop an Eulerian‐Lagrangian substructuring domain decomposition method for the solution of unsteady‐state advection‐diffusion transport equations. This method reduces to an Eulerian‐Lagrangian scheme within each subdomain and to a type of Dirichlet‐Neumann algorithm at subdomain interfaces. The method generates accurate and stable solutions that are free of artifacts even if large time‐steps are used in the simulation. Numerical experiments are presented to show the strong potential of the method. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:565–583, 2001  相似文献   

9.
We develop an Eulerian‐Lagrangian discontinuous Galerkin method for time‐dependent advection‐diffusion equations. The derived scheme has combined advantages of Eulerian‐Lagrangian methods and discontinuous Galerkin methods. The scheme does not contain any undetermined problem‐dependent parameter. An optimal‐order error estimate and superconvergence estimate is derived. Numerical experiments are presented, which verify the theoretical estimates.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

10.
A high‐accuracy numerical approach for a nonhomogeneous time‐fractional diffusion equation with Neumann and Dirichlet boundary conditions is described in this paper. The time‐fractional derivative is described in the sense of Riemann‐Liouville and discretized by the backward Euler scheme. A fourth‐order optimal cubic B‐spline collocation (OCBSC) method is used to discretize the space variable. The stability analysis with respect to time discretization is carried out, and it is shown that the method is unconditionally stable. Convergence analysis of the method is performed. Two numerical examples are considered to demonstrate the performance of the method and validate the theoretical results. It is shown that the proposed method is of order Ox4 + Δt2 ? α) convergence, where α ∈ (0,1) . Moreover, the impact of fractional‐order derivative on the solution profile is investigated. Numerical results obtained by the present method are compared with those obtained by the method based on standard cubic B‐spline collocation method. The CPU time for present numerical method and the method based on cubic B‐spline collocation method are provided.  相似文献   

11.
Mathematical models used to describe porous medium flow lead to coupled systems of time‐dependent partial differential equations. Standard methods tend to generate numerical solutions with nonphysical oscillations or numerical dispersion along with spurious grid‐orientation effect. The MMOC‐MFEM time‐stepping procedure, in which the modified method of characteristics (MMOC) is used to solve the transport equation and a mixed finite element method (MFEM) is used for the pressure equation, simulates porous medium flow accurately even if large spatial grids and time steps are used. In this article we prove an optimal‐order error estimate for a family of MMOC‐MFEM approximations. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

12.
In this study, we derive optimal uniform error bounds for moving least‐squares (MLS) mesh‐free point collocation (also called finite point method) when applied to solve second‐order elliptic partial integro‐differential equations (PIDEs). In the special case of elliptic partial differential equations (PDEs), we show that our estimate improves the results of Cheng and Cheng (Appl. Numer. Math. 58 (2008), no. 6, 884–898) both in terms of the used error norm (here the uniform norm and there the discrete vector norm) and the obtained order of convergence. We then present optimal convergence rate estimates for second‐order elliptic PIDEs. We proceed by some numerical experiments dealing with elliptic PDEs that confirm the obtained theoretical results. The article concludes with numerical approximation of the linear parabolic PIDE arising from European option pricing problem under Merton's and Kou's jump‐diffusion models. The presented computational results (including the computation of option Greeks) and comparisons with other competing approaches suggest that the MLS collocation scheme is an efficient and reliable numerical method to solve elliptic and parabolic PIDEs arising from applied areas such as financial engineering.  相似文献   

13.
Characteristic methods generally generate accurate numerical solutions and greatly reduce grid orientation effects for transient advection‐diffusion equations. Nevertheless, they raise additional numerical difficulties. For instance, the accuracy of the numerical solutions and the property of local mass balance of these methods depend heavily on the accuracy of characteristics tracking and the evaluation of integrals of piecewise polynomials on some deformed elements generally with curved boundaries, which turns out to be numerically difficult to handle. In this article we adopt an alternative approach to develop an Eulerian‐Lagrangian control‐volume method (ELCVM) for transient advection‐diffusion equations. The ELCVM is locally conservative and maintains the accuracy of characteristic methods even if a very simple tracking is used, while retaining the advantages of characteristic methods in general. Numerical experiments show that the ELCVM is favorably comparable with well‐regarded Eulerian‐Lagrangian methods, which were previously shown to be very competitive with many well‐perceived methods. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

14.
In this article, we develop numerical schemes for solving stiff reaction‐diffusion equations on annuli based on Chebyshev and Fourier spectral spatial discretizations and integrating factor methods for temporal discretizations. Stiffness is resolved by treating the linear diffusion through the use of integrating factors and the nonlinear reaction term implicitly. Root locus curves provide a succinct analysis of the A‐stability of these schemes. By utilizing spectral collocation methods, we avoid the use of potentially expensive transforms between the physical and spectral spaces. Numerical experiments are presented to illustrate the accuracy and efficiency of these schemes. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1113–1129, 2011  相似文献   

15.
First‐order system least‐squares spectral collocation methods are presented for the Stokes equations by adopting the first‐order system and modifying the least‐squares functionals in 2 . Then homogeneous Legendre and Chebyshev (continuous and discrete) functionals are shown to be elliptic and continuous with respect to appropriate product weighted norms. The spectral convergence is analyzed for the proposed methods with some numerical experiments. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 128–139, 2004  相似文献   

16.
We develop an upwind finite volume (UFV) scheme for unsteady‐state advection‐diffusion partial differential equations (PDEs) in multiple space dimensions. We apply an alternating direction implicit (ADI) splitting technique to accelerate the solution process of the numerical scheme. We investigate and analyze the reason why the conventional ADI splitting does not satisfy maximum principle in the context of advection‐diffusion PDEs. Based on the analysis, we propose a new ADI splitting of the upwind finite volume scheme, the alternating‐direction implicit, upwind finite volume (ADFV) scheme. We prove that both UFV and ADFV schemes satisfy maximum principle and are unconditionally stable. We also derive their error estimates. Numerical results are presented to observe the performance of these schemes. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 211–226, 2003  相似文献   

17.
This paper is concerned with the numerical solutions of Bratu‐type and Lane‐Emden–type boundary value problems, which describe various physical phenomena in applied science and technology. We present an optimal collocation method based on quartic B‐spine basis functions to solve such problems. This method is constructed by perturbing the original problem and on a uniform mesh. The method has been tested by four nonlinear examples. In order to show the advantage of the new method, numerical results are compared with those obtained by some of the existing methods, such as normal quartic B‐spline collocation method and the finite difference method (FDM). It has been observed that the order of convergence of the proposed method is six, which is two orders of magnitude larger than the normal quartic B‐spline collocation method. Moreover, our method gives highly accurate results than the FDM.  相似文献   

18.
In this article, we give some numerical techniques and error estimates using web‐spline based mesh‐free finite element method for the heat equation and the time‐dependent Navier–Stokes equations on bounded domains. The web‐spline method uses weighted extended B‐splines on a regular grid as basis functions and does not require any grid generation. We demonstrate the method by providing numerical results for the Poisson's and stationary Stokes equation. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

19.
The Chebyshev‐Legendre spectral method for the two‐dimensional vorticity equations is considered. The Legendre Galerkin Chebyshev collocation method is used with the Chebyshev‐Gauss collocation points. The numerical analysis results under the L2‐norm for the Chebyshev‐Legendre method of one‐dimensional case are generalized into that of the two‐dimensional case. The stability and optimal order convergence of the method are proved. Numerical results are given. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

20.
An artificial‐viscosity finite‐difference scheme is introduced for stabilizing the solutions of advection‐diffusion equations. Although only the linear one‐dimensional case is discussed, the method is easily susceptible to generalization. Some theory and comparisons with other well‐known schemes are carried out. The aim is, however, to explain the construction of the method, rather than considering sophisticated applications. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 581–588, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号