首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 869 毫秒
1.
Microfluidic devices were developed that integrate the synthesis of well defined block copolymers and dynamic light scattering (DLS) measurement of their micelle formation. These metal devices were designed to operate in contact with organic solvents and elevated temperatures for long periods, and thus were capable of continuous in-channel atom transfer radical polymerization (ATRP) of styrene and (meth)acrylate homopolymers and block copolymers. These devices were equipped with a miniaturized fiber optic DLS probe that included several technology improvements, including a measurement volume of only 4 microlitres, simple alignment, and reduced multiple scattering. To demonstrate the integrated measurement, poly(methyl methacrylate-b-lauryl methacrylate) and poly(methyl methacrylate-b-octadecyl methacrylate) block copolymers were processed on the device with a selective solvent, dodecane, to induce micelle formation. The in situ DLS measurements yielded the size and aggregation behavior of the micelles. For example, the block copolymer solutions formed discrete micelles (D(H) approximately = 25 nm) when the corona block was sufficiently long (f(MMA) < 0.51), but the micelles aggregated when this block was short. This study demonstrates the utility of these new devices for screening the solution behavior of custom synthesized polymeric surfactants and additives.  相似文献   

2.
A novel POSS‐containing methacrylate monomer (HEMAPOSS) was fabricated by extending the side chain between polyhedral oligomeric silsesquioxane (POSS) unit and methacrylate group, which can efficiently decrease the steric hindrance in free‐radical polymerization of POSS‐methacrylate monomer. POSS‐containing homopolymers (PHEMAPOSS) with a higher degree of polymerization (DP) can be prepared using HEMAPOSS monomer via reversible addition–fragmentation chain transfer (RAFT) polymerization. PHEMAPOSS was further used as the macro‐RAFT agent to construct a series of amphiphilic POSS‐containing poly(N, N‐dimethylaminoethyl methacrylate) diblock copolymers, PHEMAPOSS‐b‐PDMAEMA. PHEMAPOSS‐b‐PDMAEMA block copolymers can self‐assemble into a plethora of morphologies ranging from irregular assembled aggregates to core‐shell spheres and further from complex spheres (pearl‐necklace‐liked structure) to large compound vesicles. The thermo‐ and pH‐responsive behaviors of the micelles were also investigated by dynamic laser scattering, UV spectroscopy, SEM, and TEM. The results reveal the reversible transition of the assembled morphologies from spherical micelles to complex micelles was realized through acid‐base control. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2669‐2683  相似文献   

3.
ABA‐type amphiphilic tri‐block copolymers were successfully synthesized from poly(ethylene oxide) derivatives through anionic polymerization. When poly(styrene) anions were reacted with telechelic bromine‐terminated poly(ethylene oxide) ( 1 ) in 2:1 mole ratio, poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers were formed. Similarly, stable telechelic carbanion‐terminated poly(ethylene oxide), prepared from 1,1‐diphenylethylene‐terminated poly (ethylene oxide) ( 2 ) and sec‐BuLi, was also used to polymerize styrene and methyl methacrylate separately, as a result, poly (styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) and poly (methyl methacrylate)‐b‐poly(ethylene oxide)‐b‐poly(methyl methacrylate) tri‐block copolymers were formed respectively. All these tri‐block copolymers and poly(ethylene oxide) derivatives, 1 and 2 , were characterized by spectroscopic, calorimetric, and chromatographic techniques. Theoretical molecular weights of the tri‐block copolymers were found to be similar to the experimental molecular weights, and narrow polydispersity index was observed for all the tri‐block copolymers. Differential scanning calorimetric studies confirmed the presence of glass transition temperatures of poly(ethylene oxide), poly(styrene), and poly(methyl methacrylate) blocks in the tri‐block copolymers. Poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers, prepared from polystyryl anion and 1 , were successfully used to prepare micelles, and according to the transmission electron microscopy and dynamic light scattering results, the micelles were spherical in shape with mean average diameter of 106 ± 5 nm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
The self-association of the fluorinated diblock copolymer, poly(methacrylic acid)-block-poly(perfluorooctylethyl methacrylate) (PMAA-b-PFMA), in water has been investigated by light scattering, potentiometry, atomic force microscopy, and transmission electron microscopy. The size of the polymer micelles increases, as the degree of dissociation of the PMAA blocks increases. Since the charged PMAA block takes the stretched structure, PMAA-b-PFMA can easily form large micelles due to the low steric hindrance of PMAA blocks. Addition of NaCl shielded electrostatic repulsion in the PMAA chain and induced the formation of smaller micelles than water without NaCl did because of the bulky structure of the PMAA chain in the shell of the micelles. The micelle of PMAA-b-PFMA in ethanol is larger than that of poly(t-butyl methacrylate)-block-poly(perfluorooctylethyl methacrylate) (PtBMA-b-PFMA) in ethanol as a result of the higher steric hindrance of the PtBMA block. The dimensions of the core and shell of the micelles were estimated. The micelle of PMAA-b-PFMA in water possesses a rather thick shell and a large volume per molecule, consistent with the extended PMAA chain. On the other hand, the shell of the micelle in an ethanol solution of PtBMA-b-PFMA is thin but has a large surface area. Facts are consistent with the shrunk structure of the PtBMA block in poor solvent.  相似文献   

5.
Styrene/maleic anhydride (MA) copolymerization was carried out using benzoyl peroxide (BPO) and 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO). Styrene/MA copolymerization proceeded faster and yielded higher molecular weight products compared to styrene homopolymerization. When styrene/MA copolymerization was approximated to follow the first‐order kinetics, the apparent activation energy appeared to be lower than that corresponding to styrene homopolymerization. Molecular weight of products from isothermal copolymerization of styrene/MA increased linearly with the conversion. However products from the copolymerization at different temperatures had molecular weight deviating from the linear relationship indicating that the copolymerization did not follow the perfect living polymerization characteristics. During the copolymerization, MA was preferentially consumed by styrene/MA random copolymerization and then polymerization of practically pure styrene continued to produce copolymers with styrene‐co‐MA block and styrene‐rich block. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2239–2244, 2000  相似文献   

6.
In this work, the polystyrene‐b‐poly(ethylene oxide) (PS‐b‐PEO) block copolymers with a trithiocarbonate group between the blocks were prepared by polymerization of styrene in the presence of a trithiocarbonate reversible addition fragmentation chain transfer (RAFT) agent connected with PEO. Decomposition of the trithiocarbonate group by UV irradiation was investigated in three different types of solvent: tetrahydrofuran (THF, common solvent for both blocks), cyclohexane/dioxane mixture (selective solvent for the PS block) and N,N‐dimethylformamide (DMF)/ethanol mixture (selective solvent for the PEO block). It is found that cleavage of the block copolymers can take place in all these three solvents and the cleavage ratio ranges from 76 to 86%. The micellar morphologies in selective solvents before and after cleavage were examined. It is observed that the size of the micelles is reduced after cleavage and sometimes aggregation of the micelles occurs due to removal of the corona of micelles. It shows that this work provides a facile and general method for synthesis of cleavable block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3834–3840, 2010  相似文献   

7.
Transformation of “living” carbocationic polymerization of styrene and isobutene to controlled atom transfer radical polymerization (ATRP) is described and formation of the corresponding AB and ABA block copolymers with styrene (St), methyl methacrylate (MMA, methyl acrylate (MA) and isobornyl acrylate (IBA) was demonstrated. A similar approach was applied to the cationic ring opening polymerization of tetrahydrofuran leading to the AB and ABA block copolymers with St, MMA and MA using ATRP. Site transformation approach was also used for the ring opening metathesis polymerization of norbornene and polycondensation systems using polysulfone as an example. In both cases, AB and ABA block copolymers were efficiently formed with styrene and acrylates.  相似文献   

8.
Statistical copolymers of di(ethylene glycol) methyl ether methacrylate (MEO2MA) and tri(ethylene glycol) methyl ether methacrylate (MEO3MA) were synthesized by atom transfer radical polymerization (ATRP) providing copolymers with controlled composition and molecular weights ranging from Mn = 8,300–56,500 with polydispersity indexes (Mw/Mn) between 1.19 and 1.28. The lower critical solution temperature (LCST) of the copolymers increased with the mole fraction of MEO3MA in the copolymer over the range from 26 to 52 °C. The average hydrodynamic diameter, measured by dynamic light scattering, varied with temperature above the LCST. These two monomers were also block copolymerized by ATRP to form polymers with molecular weight of Mn = 30,000 and Mw/Mn from 1.12 to 1.21. The LCST of the block copolymers shifted toward the LCST of the major segment, as compared to the value measured for the statistical copolymers at the same composition. As temperature increased, micelles, consisting of aggregated PMEO2MA cores and PMEO3MA shell, were formed. The micelles aggregated upon further heating to precipitate as larger particles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 194–202, 2008  相似文献   

9.
The ability of 2‐vinyl‐4,4‐dimethyl‐5‐oxazolone (VDM), a highly reactive functional monomer, to produce block copolymers by reversible addition fragmentation chain transfer (RAFT) sequential polymerization with methyl acrylate (MA), styrene (S), and methyl methacrylate (MMA) was investigated using cumyl dithiobenzoate (CDB) and 2‐cyanoisopropyl dithiobenzoate (CPDB) as chain transfer agents. The results show that PS‐b‐PVDM and PMA‐b‐PVDM well‐defined block copolymers can be prepared either by polymerization of VDM from PS‐ and PMA‐macroCTAs, respectively, or polymerization of S and MA from a PVDM‐macroCTA. In contrast, PMMA‐b‐PVDM block copolymers with controlled molecular weight and low polydispersity can only be obtained by using PMMA as the macroCTA. Ab initio calculations confirm the experimental studies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
Copolymers containing styrene and alkyl methacrylate (n-butyl-, n-hexyl-, or stearyl methacrylate) at different compositions have been prepared by radical copolymerization. The monomer reactivity ratios were estimated using the Finemann-Ross, the inverted FR and the Kelen-Tüdos graphical methods. Structural parameters of the copolymers were obtained calculating the dyad monomer sequence fractions. The effect of the size of the alkyl methacrylate on the copolymer structure is discussed. The glass transition temperature, Tg of the copolymers with butyl and hexyl methacrylate was examined in the frame of several theoretical equations allowing the prediction of these Tg values. The best fit was obtained using methods that take into account the monomer sequence distribution of the copolymers. The copolymers of styrene with stearyl methacrylate exhibited the characteristic melting endotherm, due to the crystallinity of the methacrylate sequences and the polystyrene glass transition temperature.  相似文献   

11.
Synthesis and radical polymerization of a novel optically active methacrylate, (S)–2–tert–butoxycarbonylamino–3–phenylpropyl methacrylate (MA–F–BOC), were examined. MA–F–BOC was synthesized from methacrylic acid and N–protected (L)–phenylalaninol. Radical polymerization of MA–F–BOC quantitatively afforded the corresponding polymethacrylate with a relatively high molecular weight. Radical copolymerizations of MA–F–BOC were carried out with styrene and acrylamide to afford the copolymers. Radical polymerization of MA–F–BOC in the presence of n–butanethiol afforded the oligomers, whose degrees of polymerizations were 3.3–8.0. The BOC group was completely cloven with HBr to afford the corresponding optically active polymeric amine quantitatively. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 1981–1986, 1998  相似文献   

12.
Water-soluble amphiphilic block copolymers consisting of a hydrophobic block of poly(alkyl methacrylate) and a hydrophilic anionic polyelectrolyte block have been synthesized by a living anionic polymerization of methyl methacrylate and glycidyl methacrylate and subsequent selective modification of the oxirane groups of the glycidyl methacrylate block into hydroxysulfonate groups by a phase transfer catalyzed sulfonation reaction. The block copolymers were characterized by a predictable motecular weight and a narrow molecular weight distribution while the yield was quantitative. These amphiphilic block copolymers display surfaceactive behavior in water and they are characterized by a critical micelle concentration.  相似文献   

13.
The synthesis and self‐assembly properties in aqueous solutions of novel amphiphilic block copolymers composed of one hydrophobic poly (lauryl methacrylate), (PLMA) block and one hydrophilic poly (oligo ethylene glycol methacrylate) (POEGMA) block are reported. The block copolymers were prepared by RAFT polymerization and were molecularly characterized by size exclusion chromatography, NMR and FT‐IR spectroscopy, and DSC. The PLMA‐b‐POEGMA amphiphilic block copolymers self‐assemble in nanosized complex nanostructures resembling compound micelles when inserted in aqueous media, as supported by light scattering and TEM measurements. The encapsulation and release of the model, hydrophobic, nonsteroidal anti‐inflammatory drug indomethacin in the polymeric micelles is also investigated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 155–163  相似文献   

14.
The contribution refers to the possibility of using emulsion polymerization of styrene, initiated by a heterogeneous initiator Chydroperoxide of isotactic powdered polypropylene) in the presence of a complex type activator, for the synthesis of block copolymers. Vinylmonomers with various water-solutibility, i.e. methyl methacrylate (MMA), acrylonitrile (AN) and maleic anhydride (MA), were utilized as comonomers of styrene. It was found that at the used conditions, the composition of block copolymers PS-b-P(S/AN) and PS-b-PCS/MA) can be varied by the time of polymerization of the first or second comonomer. The block copolymers were characterized by their molecular weight, and their thermal stability was also investigated.  相似文献   

15.
Well‐defined glycidyl methacrylate (GMA) based di‐ and triblock copolymers, with self‐activation and self‐initiation behaviors by incorporation of 2‐(diethylamino) ethyl methacrylate (DEA) blocks, were synthesized via ambient temperature atom transfer radical polymerization (ATRP). The stability of the GMA pendant oxirane rings in tertiary amine environments at ambient temperature was investigated. More importantly, both self‐activation behavior in oxirane ring opening addition reaction and self‐initiation behavior in post‐cure oxirane ring opening crosslinking of these block copolymers were evidenced by 1H NMR studies. The results demonstrated that the reactivity of pendent oxirane rings was strongly dependant on the nucleophilicity and steric hindrance of tertiary amine moieties and temperature. This facilitated the synthesis of well‐defined block copolymers of GMA and DEA via sequential monomer addition ATRP, particularly for polymerization of GMA monomer at ambient temperature. Moreover, these one‐component GMA based block polymers have novel self‐activation and self‐initiation properties, rendering some potential applications in both enzyme immobilization and GMA‐based thermosetting materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2947–2958, 2007  相似文献   

16.
两亲性嵌段共聚物PS-b-PMAA的合成与胶束化行为研究   总被引:7,自引:2,他引:5  
华慢  杨伟  薛乔  陈明清  刘晓亚  杨成 《化学学报》2005,63(7):631-636
利用原子转移自由基聚合法(ATRP)得到了分子量可控、分子量分布接近1.1的聚苯乙烯-b-聚甲基丙烯酸叔丁酯(PS-b-PtBMA)嵌段共聚物, 进而在酸性条件下由水解反应得到了两亲性的聚苯乙烯-b-聚甲基丙烯酸 (PS-b-PMAA)嵌段共聚物.用GPC, FTIR和1H-NMR等对产物的分子量和组成进行了表征.使PS-b-PMAA在选择性溶剂中进行自组装, 通过激光光散射和透射电子显微镜研究了影响其胶束化行为的因素与胶束形态, 并初步探讨了胶束形成的机理, 发现通过控制嵌段共聚物的链段长度之比可得到空心球形的高分子胶束.  相似文献   

17.
Novel reversible networks utilizing photodimerization of crosslinkable anthracene groups and thermal dissociation were investigated. Reversible addition‐fragmentation chain transfer polymerization yielded well‐defined copolymers with 9‐anthrylmethyl methacrylate (AMMA) and other alkyl methacrylates such as methyl methacrylate (MMA) and 2‐ethylhexyl methacrylate (EHMA) having different AMMA compositions. Well‐controlled block copolymerization of AMMA and alkyl methacrylates was also successfully accomplished using a trithiocarbonate‐terminated poly(alkyl methacrylate) macro‐chain transfer agent. The anthracene‐containing copolymers showed reversibility via crosslinking based on photodimerization with ultraviolet irradiation and subsequent thermal dissociation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2302–2311  相似文献   

18.
Main‐chain imidazolium‐functionalized amphiphilic block copolymers (PIL‐b‐PS) consisting of polyionic liquid (PIL) and polystyrene (PS) blocks have been first synthesized by condensation polymerization combined with nitroxide‐mediated free radical polymerization (NMP). The di‐functional imidazolium‐based ionic liquid (IL) having both hydroxyl and ester end groups was synthesized through Michael addition between imidazole and methylacrylate (MA) and further quaternization by 2‐chloroethanol. The HTEMPO (4‐hydroxy‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy) terminated polyionic liquid (HTEMPO‐PIL) as the hydrophilic block was prepared by condensation polymerization of di‐functional imidazolium IL and HTEMPO at a certain ratio. The hydrophobic PS block was synthesized by controlled radical polymerization of styrene using HTEMPO‐PIL through NMP, resulting PIL‐b‐PS block copolymers. The structure of block copolymers obtained has been characterized and verified by FTIR, 1H NMR, and size exclusion chromatography analyses. In addition, the morphology and size of the micelles formed by PIL‐b‐PS block copolymers in water were investigated by transmission electron microscopy and dynamic light scattering. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
The arrangement of monomers and morphology of fluorinated copolymers of methyl methacrylate (MMA) were found to be important for controlling the surface energy of the materials when formed into thin films. Novel copolymers of MMA and 2,2,3,3,4,4,4‐heptafluorobutyl methacrylate (F3MA) were prepared with different monomer placement, namely statistical and block arrangements of the monomer units. The surface energies decreased with increasing incorporation of F3MA, in a manner consistent with previous reports for similar copolymers; however, the surface energies of the block copolymers were consistently lower than the statistical copolymers. This was interpreted as arising from conformational restriction of presentation of the fluoromonomers to the surface in the statistical copolymers, and formation of phase‐separated domains at the surface of the block copolymers. The morphology of the block copolymers was confirmed by small angle X‐ray scattering measurements, which allowed calculation of a solubility parameter for the fluorinated segments. The results have implications for the design of more environmentally acceptable materials with ultra‐low surface energies. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2633–2641  相似文献   

20.
Self‐assembly of amphiphilic ABA random triblock copolymers in water serves as a novel approach to create unique structure micelles connected with flexible linkages. The ABA triblock copolymers consist of amphiphilic random copolymers bearing hydrophilic poly(ethylene glycol) and hydrophobic dodecyl pendants as the A segments and a hydrophilic poly(ethylene oxide) (PEO) as the middle B segment. The A block is varied in dodecyl methacrylate content of 20%–50% and degree of polymerization (DP) of 100‐200. By controlling the composition and DP of the A block, various architectures can be tailor‐made as micelles in water: PEO‐linked double core unimer micelles, PEO‐looped unimer or dimer micelles, and multichain micelles. Those PEO‐linked or looped micelles further exhibit thermoresponsive solubility in water. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 313–321  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号