首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A conjugated poly(p‐CN‐phenylenevinylene) (PCNPV) containing both electron‐donating triphenylamine units and electron‐withdrawing cyano groups was prepared via Knoevenagel condensation in a good yield. Gel permeation chromatography suggested that the soluble polymer had a very high weight‐average molecular weight of 309,000. A bright and saturated red emission was observed under UV excitation in solution and film. Cyclic voltammetry showed that the polymer presented quasi‐reversible oxidation with a relatively low potential because of the triphenylamine unit. A single‐layer indium tin oxide/PCNPV/Mg–Ag device emitted a bright red light (633 nm). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3947–3953, 2004  相似文献   

2.
A poly(p‐phenylenevinylene) (PPV) derivative containing a bulky (2,2‐diphenylvinyl)phenyl group in the side chain, EHDVP‐PPV, was synthesized by Gilch route. The reduced tolane‐bisbenzyl (TBB) defects, as well as the structure of the polymer, was confirmed by various spectroscopic methods. The intramolecular energy transfer from the (2,2‐diphenylvinyl)phenyl side group to the PPV backbone was studied by UV‐vis and photoluminescence (PL) of the obtained polymer and model compound. The polymer film showed maximum absorption and emission peaks at 454 and 546 nm, respectively, and high PL efficiency of 57%. A yellow electroluminescence (λmax = 548 nm) was obtained with intensities of 6479 cd/m2 when the light‐emitting diodes of ITO/PEDOT/EHDVP‐PPV/LiF/Al were fabricated. The maximum power efficiency of the devices was 0.729 lm/W with a turn‐on voltage of 3.6 V. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5636–5646, 2004  相似文献   

3.
Here we demonstrate a unique two‐dimensional polymer synthesis through topochemical polymerization via polymer crystal engineering, which is useful for controlling and designing the polymerization reactivity as well as the polymer chain and crystal structures. We have succeeded in the synthesis of a sheet polymer through the polymerization of alkylenediammonium (Z,Z)‐muconate as a multifunctional 1,3‐diene monomer in the crystalline state under the irradiation of UV and γ‐rays or upon heating in the dark. The photopolymerization reactivity of several muconates and the structural control of the obtained polymer are described. The stereochemical structure of the polymer and the polymerization mechanism are discussed on the basis of the results of IR and NMR spectroscopy, thermogravimetric measurements, and solid‐state hydrolysis for the transformation into poly(muconic acid). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3922–3929, 2004  相似文献   

4.
A novel series of well‐defined alternating poly[2,7‐(9,9‐dihexylfluorenyl)‐alt‐pyridinyl] (PDHFP) with donor‐acceptor repeat units were synthesized using palladium (0)‐catalyzed Suzuki cross‐coupling reactions in good to high yields. In this series of alternating polymers, 2, 7‐(9,9‐dihexylfluorenyl) was used as the light emitting unit, and the electron deficient pyridinyl unit was employed to provide improved electron transportation. These polymers were characterized by 1H‐NMR and 13C‐NMR, gel permeation chromatography (GPC), thermal analyses, and UV‐vis and fluorescence spectroscopy. The glass transition temperature of copolymers in nitrogen ranged from 110 to 148 °C, and the copolymers showed high thermal stabilities with high decomposition temperatures in the range of 350 to 390 °C in air. The difference in linkage position of pyridinyl unit in the polymer backbone has significant effects on the electronic and optical properties of polymers in solution and in film phases. Meta‐linkage (3,5‐ and 2,6‐linkage) of pyridinyl units in the polymer backbone is more favorable to polymer for pure blue emission and prevention of aggregation of polymer chain than para‐linkage (2,5‐linkage) of the pyridinyl units. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4792–4801, 2004  相似文献   

5.
A series of copolymers of acrylic acid, N‐isopropylacrylamide (NIPAM), and cinnamoyloxyethyl acrylate were synthesized and studied. The polymers were responsive to four stimuli: UV light, temperature, pH, and ionic strength. The polymeric cinnamoyl chromophores underwent efficient photodimerization with concomitant photocrosslinking of the polymeric micelles. Because of the content of NIPAM, the terpolymers displayed a lower critical solution temperature, which could be controlled by the polymer composition, pH, and ionic strength. The ability to respond to the pH resulted from the content of acrylic carboxyl groups, which became protonated at low pHs. The changes in the polymer properties due to the application of the aforementioned stimuli were studied with pyrene and perylene as fluorescent probes. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3879–3886, 2004  相似文献   

6.
The photoinduced solution polymerization of 4‐methacryloyl‐1,2,2,6,6‐pentamethyl‐piperidinyl (MPMP), used as a reactive hindered amine piperidinol derivative, was performed. The obtained MPMP homopolymer had a very narrow molecular weight distribution (1.06–1.39) according to gel permeation chromatography. The number‐average and weight‐average molecular weights increased linearly with the monomer conversion, this being characteristic of controlled/living free‐radical polymerizations. Electron spin resonance signals were detected in the MPMP homopolymer and in a polymer mixture solution, and they were assigned to nitroxide radicals, which were bound to the polymer chains and persisted at a level of 10?9 mol/L during the polymerization. Instead of the addition of mediated nitroxide radicals such as 2,2,6,6‐tetramethyl‐piperidinyl‐1‐oxy (TEMPO), those radicals (>N? O ·) were formed in situ during the photopolymerization of MPMP, and so the reaction mechanism was understood as being similar to that of TEMPO‐mediated controlled/living free‐radical polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2659–2665, 2004  相似文献   

7.
To simplify the fabrication of multilayer light‐emitting diodes, we prepared a p‐phenylenevinylene‐based polymer capped with crosslinkable styrene through a Wittig reaction. Insoluble poly(p‐phenylenevinylene) derivative (PPVD) films were prepared by a thermal treatment. The photoluminescence and ultraviolet–visible (UV–vis) absorbance of crosslinked films and noncrosslinked films were studied. We also studied the solvent resistance of crosslinked PPV films with UV–vis absorption spectra and atomic force microscopy. Double‐layer devices using crosslinked PPVD as an emitting layer, 2‐(4‐tert‐butylphenyl)‐5‐phenyl‐1,3,4‐oxadiazole (PBD) in poly(methyl methacrylate) as an electron‐transporting layer, and calcium as a cathode were fabricated. A maximum luminance efficiency of 0.70 cd/A and a maximum brightness of 740 cd/m2 at 16 V were demonstrated. A 12‐fold improvement in the luminance efficiency with respect to that of single‐layer devices was realized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2124–2129, 2004  相似文献   

8.
Water‐soluble luminescent material was developed by introducing europium (Eu(III)) ions into the core of a star polymer. Living radical polymerization was used to obtain the star polymer. The strategy to introduce Eu(III) ions into the star polymer was studied using poly(methyl methacrylate) as an arm. The best Eu(III) ion introduction was obtained by simultaneous introduction, resulting in about 30 µmol/g‐polymer, which needed only one step for synthesis. The utilization of a hydrophilic polymer such as poly(ethylene oxide) (PEO) as an arm produced a water‐soluble star polymer. The Eu(III)‐bearing PEO star polymer obtained in this study was water soluble and showed fluorescence. In addition, it was stable in water after 1 month. The Eu(III)‐bearing star polymer exhibited luminescent properties under UV light irradiation with relatively high quantum yields of 60% in organic solution and 19% in aqueous solution. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2527–2535  相似文献   

9.
Conjugated polymers consisting of pyrrole or an N‐substituted pyrrole bridged by methine with a mesogenic group were synthesized. Chemical structures of the products were confirmed with IR, NMR, UV–visible (UV–vis) spectroscopy, and gel permeation chromatography analysis. Liquid crystallinity was examined with differential scanning calorimetry measurements and polarizing optical microscopy observations. Liquid crystal domains of the polymer were macroscopically oriented in one direction by an external magnetic force (10 Tesla). The polymer orientation was confirmed by optical microscopy and X‐ray analysis. One of the polymers exhibited a striated fan‐shaped texture when observed with a polarizing optical microscope. This is attributed to the formation of a chiral smectic C (SmC*) phase, which is a property of ferroelectricity. Spontaneous polarization of the polymer occurred at 110 nC/cm2. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 616–629, 2005  相似文献   

10.
A series of novel, soluble polyazomethines bearing fluorene and carbazole moieties in the main chain and solubility‐improving moieties in the side group (dibutyl, ethylhexyl, thienylethyloxy, furyl, and fluorenyl) were synthesized. Good‐quality films of these polymers were prepared through the conventional solution‐casting and drying processes. Depending on the polymer structure, some polymers showed a glass‐transition temperature (107–167 °C) and others showed a melting temperature (285–341 °C). The temperature of 5% weight loss under nitrogen atmosphere of the polymers ranged from 370 to 464 °C. The results indicated that the side groups incorporated into the polyazomethine structure in this work improved the polymer solubility without sacrificing thermal stability. Depending on the polymer structure, some of the polymers were crystalline whereas others were amorphous. All the polyazomethines were solution‐processable and thermally stable, making them potential candidate materials for applications in microelectronics and aerospace. Moreover, the features in the UV–visible spectra of the polyazomethines were redshifted as compared with those of the monomers from which the polymers were synthesized, indicating that these polymers, if combined with an appropriate doping agent to improve the light‐emitting and conducting abilities, may be good candidate materials for optoelectronic devices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 825–834, 2004  相似文献   

11.
New poly(aryl‐ethynylene) polymers of tuned rigidity/flexibility were synthesized by a palladium‐catalyzed polycondensation. The Sonogashira–Hagihara‐type coupling reaction of 2,5‐diethynyl‐4‐dodecyltoluene with 2,5‐ and/or 3,5‐dibromopyridine led to polymers of different rigidity/flexibility simply by varying the ratio of 2,5‐ to 3,5‐dibromopyridine charged in the polycondensation reaction. The ratio of para–meta linkages at the pyridine moiety in the polymer backbone was determined by NMR spectroscopy. The combination of molecular weight data obtained from vapor pressure osmometry and the use of oligomeric model compounds allowed us to establish a polymer‐specific gel permeation chromatography calibration. Information about the molecular conformation of the polymers in solution were obtained by small‐angle X‐ray scattering (SAXS) experiments. The glass‐transition and melting temperatures varied systematically with the degree of rigidity/flexibility and could be directly related to the conformational changes as reflected from the SAXS data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1919–1933, 2004  相似文献   

12.
A novel conjugated polymer P‐1 incorporating Ru(II) bis(acetylide) complex and borondipyrromethene (BODIPY) moieties in the main chain was synthesized by Pd‐catalyzed Sonogashira coupling reaction of diethynyl substituted BODIPY derivative ( M‐1 ) and Ru(II) bis(acetylide) complex ( M‐2 ), and the reference polymer P‐2 was obtained from the same method as preparation of P‐1 . Compared with P‐2 , Ru(II)‐containing polymer P‐1 shows low‐bandgap as 0.87 eV from cyclic voltammetry, and obvious redshifts in both UV–vis absorption and fluorescence spectra. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1686–1692  相似文献   

13.
The synthesis and optical properties of polymers bearing the repeating unit of terfluorene and various organosilicon groups were investigated. Polymers with high molecular weight and good solubility could be obtained by Suzuki coupling polymerization from silylene‐containing fluorene‐based dibromo monomers and 9,9‐dihexylfluorene‐2,7‐bis(trimethyleneborate). From UV spectra of polymers bearing acyclic silylene bridge, the organosilicon units not only interrupted a π‐conjugation but also contributed to an electronic communication between connected fluorenes. The emission maximum wavelengths (ca. 400 nm) blue‐shifted when compared with that of polyfluorene (418 nm) and the fluorescence quantum yields were considerably high (>0.82) in the CHCl3 solution. On the other hand, rather broad emission was observed at 480 nm and the fluorescence quantum yield was quite low (0.004) in the solution‐state PL spectrum of tetraphenylsilole‐containing polymer. The polymer emitted visible green light in the spin‐coated film. The fluorescence peak intensity at 486 nm gradually decreased when the film was illuminated with the UV light of 359 nm in air. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4786–4794, 2007  相似文献   

14.
Monoallyl compounds are not readily homopolymerized by a conventional free‐radical mechanism. However, we successfully performed the radical polymerization of allylbiguanide hydrochloride in a concentrated acid solution (hydrochloric acid or phosphoric acid) in the presence of a radical initiator at 50 °C. The polymer product was precipitated from the reaction solution through the addition of an excess amount of acetone. The precipitated crude polymer [polyallylbiguanide (PAB)] was then purified by dialysis. PAB was confirmed by elemental analysis, infrared spectroscopy, and 1H NMR. The molecular weight range of PAB was 10,340–113,200, and PAB exhibited a low polydispersity (weight‐average molecular weight/number‐average molecular weight = 1.04–1.68) by multi‐angle laser light scattering. The polymerization of allylbiguanide was quite sensitive to the protonic concentration of the inorganic acid. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1707–1711, 2004  相似文献   

15.
Two new poly(phenylene vinylene)s containing m‐terphenyl or 2,6‐diphenylpyridine kinked units along the main chain were synthesized and were used as luminescent and laser materials. They were prepared from Heck coupling of 2,5‐didodecyloxy‐1,4‐divinylbenzene with 4,4″‐dibromo‐3′‐phenyl‐m‐terphenyl or 2,6‐di(4‐bromophenyl)‐4‐phenylpyridine. The kinked units along the main chain caused a partial interruption of the conjugation leading to emission at a shorter wavelength as compared with poly(p‐phenylene vinylene). The polymers presented blue‐green emission in solution and green‐yellow emission in the solid state with photoluminescence maxima at 465–497 and 546–550 nm, respectively. Polymer containing 2,6‐diphenylpyridine segments emitted at a longer wavelength than that containing m‐terphenyl and displayed higher quantum yields in solution (0.61 and 0.40, respectively). The influence of the solvent and polymer concentration on the photoluminescence characteristics was investigated. The photoluminescence properties of protonated polymer containing 2,6‐diphenylpyridine segments were investigated both in solution and in film. Amplified spontaneous emission and tunable laser action were also obtained from the two polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2214–2224, 2004  相似文献   

16.
A UV‐responsive polymer was prepared via condensation polymerization of 2‐nitrobenzyl(4‐(1,2‐dihydroxyethyl)phenyl)carbamate and azalaic acid dichloride. When the polymer was irradiated with UV light, the nitrobenzyl urethane protecting group was removed and the deprotected aniline underwent spontaneous 1,6‐elimination reactions, resulting in degradation of the polymer. Nanoparticles with encapsulated Nile Red were formulated with the degradable polymer and triggered burst release of Nile Red was observed when the nanoparticles were irradiated by UV light. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1161–1168  相似文献   

17.
We report an available approach for quickly fabricating CdS QD‐polymer nanocomposites via frontal polymerization (FP). First, we synthesized (3‐mercaptopropyl)‐1‐trimethoxysilane (MPS)‐capped CdS quantum dots (QDs). With these MPS‐capped CdS QDs containing mercapto groups, MPS‐capped CdS QDs can be easily incorporated into a poly(N‐methylolacrylamide) (PNMA) matrix via FP. A variety of features for preparing QD‐polymer nanocomposites, such as initiator concentration and CdS concentration, were thoroughly investigated. The fluorescence properties of QD‐polymer nanocomposites prepared via FP are comparatively investigated on the basis of ultraviolet–visible (UV–vis) spectra and photoluminescence (PL) spectra. Results show that the PL intensity of QD‐polymer nanocomposites prepared via the FP method is superior to that obtained by the traditional batch polymerization (BP) method. In addition, by measuring the changes of PL intensity of the samples immersed in different concentrations of copper acetate solution, we found the QD‐polymer nanocomposites can be ultrasensitive to copper ions. This FP process can be exploited as a facile and rapid way for synthesis QD‐polymer nanocomposites on a large scale, avoiding the fluorescence quenching of nanocrystals during incorporation nanocrystals into polymer matrices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2170–2177, 2010  相似文献   

18.
We report here electrochemical synthesis of novel soluble donor–acceptor (D–A) polymer with suitably functionalized perylenetetracarboxylic diimide dye derivative covalently linked to carbazole moiety (Cbz‐PDI). The band gap, Eg was measured using UV–Vis spectroscopy and compared with that obtained by cyclic voltammetry (CV). Efficient intramolecular electron transfer from carbazole‐donor to perynediimide‐acceptor leads to remarkable fluorescence quenching of the perylene core. Furthermore, spectroelectrochemical property and surface morphology of the polymer film were investigated. Characteristic monoanion and dianion radical bands on the UV–Vis absorption spectra attributed to the electrochemical reduction of the neutral polymer were observed. During the reduction process, red color of the film turned into blue and violet, respectively. Finally, the photovoltaic performance of the D–A double‐cable polymer was checked and nearly 0.1% electrical conversion efficiency is obtained under simulated AM 1.5 solar light with 100 mW/cm2 radiation power. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6280–6291, 2009  相似文献   

19.
A reversible addition–fragmentation chain transfer (RAFT) agent, 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN), was synthesized and applied to the RAFT polymerization of glycidyl methacrylate (GMA). The polymerization was conducted both in bulk and in a solvent with 2,2′‐azobisisobutyronitrile (AIBN) as the initiator at various temperatures. The results for both types of polymerizations showed that GMA could be polymerized in a controlled way by RAFT polymerization with CPDN as a RAFT agent; the polymerization rate was first‐order with respect to the monomer concentration, and the molecular weight increased linearly with the monomer conversion up to 96.7% at 60 °C, up to 98.9% at 80 °C in bulk, and up to 64.3% at 60 °C in a benzene solution. The polymerization rate of GMA in bulk was obviously faster than that in a benzene solution. The molecular weights obtained from gel permeation chromatography were close to the theoretical values, and the polydispersities of the polymer were relatively low up to high conversions in all cases. It was confirmed by a chain‐extension reaction that the AIBN‐initiated polymerizations of GMA with CPDN as a RAFT agent were well controlled and were consistent with the RAFT mechanism. The epoxy group remained intact in the polymers after the RAFT polymerization of GMA, as indicated by the 1H NMR spectrum. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2558–2565, 2004  相似文献   

20.
This article concerns the hydrosilylation polyaddition of 1,4‐bis(dimethylsilyl)benzene ( 1 ) with 4,4′‐diethynylbiphenyl, 2,7‐diethynylfluorene ( 2b ), and 2,6‐diethynylnaphthalene with RhI(PPh3)3 catalyst. Trans‐rich polymers with weight‐average molecular weights (Mw's) ranging from 19,000 to 25,000 were obtained by polyaddition in o‐Cl2C6H4 at 150–180 °C, whereas cis‐rich polymers with Mw's from 4300 to 34,000 were obtained in toluene at 0 °C–r.t. These polymers emitted blue light in 4–81% quantum yields. The cis polymers isomerized into trans polymers upon UV irradiation, whereas the trans polymers did not. The device having a layer of polymer trans‐ 3b obtained from 1 and 2b demonstrated electroluminescence without any dopant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2774–2783, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号