首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anionic and cationic ring‐opening polymerizations of two novel cyclotrisiloxanes, tetramethyl‐1‐(3′‐trifluoromethylphenyl)‐1‐phenylcyclotrisiloxane ( I ) and tetramethyl‐1‐[3′,5′‐bis(trifluoromethyl)phenyl]‐1‐phenylcyclotrisiloxane ( II ), are reported. Anionic ring‐opening polymerization of I or II leads to copolymers with highly regular microstructures. Copolymers obtained by cationic polymerizations of I or II , initiated by triflic acid, have less regular microstructures characteristic of chemoselective polymerization processes. The composition and microstructure of copolymers have been characterized by 1H and 29Si‐NMR, the molecular weight distributions by GPC, and the thermal properties by DSC and TGA. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5235–5243, 2004  相似文献   

2.
The photoinitiated cationic ring‐opening polymerizations of certain epoxides and 3,3‐disubstituted oxetanes display the characteristics of frontal polymerizations. When irradiated with UV light, these monomers display a marked induction period, during which little conversion of the monomer to the polymer takes place. The local application of heat to an irradiated monomer sample results in polymerization that occurs as a front propagating rapidly throughout the entire reaction mass. For the characterization of these frontal polymerizations, the use of a new monitoring technique, employing optical pyrometry, has been instituted. This method provides a simple, rapid means of following these fast polymerizations and quantitatively determining their frontal velocities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1630–1646, 2004  相似文献   

3.
Microemulsion and emulsion polymerization can have some similarities in starting conditions and polymerization mechanisms, but the resulting latices are unalike in particle size and molecular weight. Here we show that polymerizations can be formulated that display the characteristics often separately associated with microemulsion or emulsion polymerization. Kinetic modeling and particle size measurements show that emulsion polymerizations with initial concentrations close to the microemulsion–emulsion phase boundary demonstrate relatively fast consumption of monomer droplets and produce smaller particles. Because of their high surfactant concentrations, none of the emulsion polymerizations examined demonstrate the classical Smith–Ewart kinetics usually associated with emulsion polymerization. Instead these emulsion polymerizations have a long period of particle nucleation that subsides only after the disappearance of monomer droplets. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5253–5261, 2004  相似文献   

4.
This study explored the abilities of 1‐(9‐anthrylmethyloxy)‐2‐pyridone and related compounds, which absorb long‐wavelength light (>350 nm), to photochemically initiate radical and cationic polymerizations. It was found that the irradiation of the title compounds initiates the radical polymerization of styrene whereas the cationic polymerization of oxetane proceeds in the presence of these photoinitiators to a negligible extent. The behavior of 9‐anthrylmethyloxyl and amidyl radicals in the photopolymerization process of styrene was discussed based on 1H NMR, UV, and fluorescence spectral data. In addition, the photoinitiation ability of the anthrylmethyloxyl end group was also investigated by using its model compound. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2859–2865, 2004  相似文献   

5.
In TEMPO (2,2,6,6,‐tetramethyl‐1‐piperidinyloxy) controlled styrene radical polymerizations, the thermal self‐initiation reaction of styrene monomer is one of the main sources for the deviations from ideal living polymerization. However, it is also important because it continuously generates radicals to compensate for the loss of radicals caused by the termination reactions and thereby maintains a reasonable reaction rate. In this report, different initial TEMPO concentrations were used in styrene miniemulsion polymerizations without any added initiator. The consumption rate of TEMPO or radical generation rate was calculated from the length of the induction period and the increasing total number of polymer chains. It was found that there is little difference between the miniemulsions and the corresponding bulk systems in terms of the length of the induction period, which increases linearly with initial TEMPO concentration. After the induction period, the consumption rate of TEMPO or radical generation rate was reduced to a lower level, and a faster initial polymerization rate was found in the bulk system compared to the corresponding miniemulsion system. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4921–4932, 2004  相似文献   

6.
The systematical kinetic investigations of four 2‐substituted‐2‐oxazoline monomers with four initiators at two temperatures and four monomer/initiator ratios are described. To cover this broad range of variables (128 different combinations), an automated synthesizer was used to accelerate the investigations and to provide highly comparable results. With both gas chromatography and gel permeation chromatography, the livingness and the polymerization rates were determined for the different polymerizations. The resulting insights in the kinetics were used for the directed synthesis of truly random copolymers and copolymers with composition drift. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1830–1840, 2004  相似文献   

7.
The free radical polymerizations of methyl acrylate have been studied under γ‐ray irradiation in the presence of the dithiocarbamates with different N‐groups. The results indicate that the conjugation structure of the N‐group of dithiocarbamate plays an important role in living free radical polymerization. The polymerizations reveal good living characteristics in the presence of dithiocarbamates (benzyl 1H‐imidazole‐1‐carbodithioate, benzyl 1H‐pyrrole‐1‐carbodithioate, benzyl 1H‐indole‐1‐carbodithioate, and benzyl 9H‐carbazole‐9‐carbodithioate) with N‐aryl group. In contrast, the polymerization with benzyl N,N‐diethyldithiocarbamate cannot be controlled, and the obtained polymer has a broad molecular weight distribution or even crosslink occurs. Moreover, polymerization rate is influenced by the conjugation structure of the N‐group of dithiocarbamate, and the aromatic polycyclic structure of the N‐group leads to slow polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5670–5677, 2004  相似文献   

8.
cis‐Selective polymerizations of isoprene with the catalysts composed of η5‐C5H4(R)TiCl3 (1; R?H, 2 ; tert‐Bu) and methylaluminoxane were investigated. Both catalysts showed remarkable catalytic activities for the polymerization of isoprene. The polymerization activities were strongly affected by the substituent introduced on cyclopentadienyl ring. Introduction of bulky tert‐butyl group was found to be effective for enhancement of polymerization activity, but the cis‐content of polyisoprene prepared by the 2 /MAO catalyst was lower than that by 1 /MAO catalyst. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1841–1844, 2004  相似文献   

9.
N‐Bromosuccinimide (NBS) was used as the initiator in the atom transfer radical polymerizations of styrene (St) and methyl methacrylate (MMA). The NBS/CuBr/bipyridine (bpy) system shows good controllability for both polymerizations and yields polymers with polydispersity indexes ranging from 1.18 to 1.25 for St and 1.14 to 1.41 for MMA, depending on the conditions used. The end‐group analysis of poly(MMA) and polystyrene indicated the polymerization is initiated by the succinimidyl radicals formed from the redox reaction of NBS with CuBr/bpy. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5811–5816, 2004  相似文献   

10.
In studying 2,2,6,6‐tetramethy‐1‐piperidinyloxy (TEMPO)‐mediated styrene miniemulsions, we have observed that the surfactant sodium dodecylbenzenesulfonate (SDBS) not only provides colloidal stability but also influences the rate of polymerization. Increasing the SDBS concentration results in higher polymerization rates, although the molecular weight distribution and particle size distribution are not significantly impacted. We have also examined another common sulfonate surfactant, DOWFAX 8390. In contrast to SDBS, DOWFAX 8390 does not affect the polymerization rate. Furthermore, DOWFAX‐stabilized polymerizations are slower than SDBS‐stabilized polymerizations. TEMPO‐mediated bulk styrene polymerizations are also accelerated significantly in the presence of SDBS. Although the mechanism for the rate acceleration is unknown, the experimental evidence suggests that SDBS is participating in the generation of radicals capable of propagating, thereby reducing the TEMPO concentration within the particles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5974–5986, 2006  相似文献   

11.
Nitroxide‐mediated, controlled living radical polymerization was employed to introduce terpyridine ligands at one or two chain ends of polystyrene. For this purpose, a unimolecular initiator bearing both a terpyridine ligand as well as a mediating nitroxide was synthesized and used for the controlled polymerization of styrene. Moreover, a maleimide‐functionalized terpyridine was prepared in order to synthesize telechelic polymers, utilizing nitroxide substitution reactions. Kinetic studies of the polymerization of styrene were carried out. In all polymerizations, special attention was focused on the retention of end‐group functionality, in light of the effects of autoinitiation and autopolymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4016–4027, 2004  相似文献   

12.
The kinetics of free‐radical emulsion polymerization of γ‐methyl‐α‐methylene‐γ‐butyrolactone (MeMBL), a renewable monomer related to methyl methacrylate, are presented in detail for the first time, and stable polymer latices are prepared. The effects of different reaction parameters on free‐radical emulsion polymerization of MeMBL are presented. Homogeneous nucleation is asserted to be the dominant path for particle formation. Miniemulsion copolymerization of MeMBL and styrene is also reported. In this case, the homogeneous nucleation process appears limited when using an oil soluble initiator. Both the RAFT miniemulsion polymerizations and RAFT bulk polymerizations are well controlled and narrow polydispersity copolymers are produced. Rate retardation is observed in the RAFT miniemulsion polymerizations compared with the free‐radical polymerization and RAFT bulk polymerizations and the possible causes of the retardation are discussed. The reactivity ratios of MeMBL and styrene in RAFT bulk copolymerization are also determined. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5929–5944, 2008  相似文献   

13.
The ionic polymerization of substituted o‐quinodimethanes via thermal isomerization of benzocyclobutenes is described. In the cationic polymerizations of 1‐methoxy‐o‐quinodimethane in the presence of various cationic initiators at 110 °C for 12 h, chain transfer reactions also considerably underwent besides the polymerization. Meanwhile, cationic polymerizations of 1‐trimethylsilyloxy‐o‐quinodimethane under the same conditions gave good yields of the corresponding polymer. Anionic polymerizations of 1‐cyano‐o‐quinodimethane in the presence of anionic initiators such as n‐BuLi or t‐BuOK were performed at various temperatures for 12 h. Good yields of hexane‐insoluble polymer, which was produced by anionic polymerization of corresponding o‐quinodimethane as an intermediate, were obtained above 120 °C. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 844–850, 2008  相似文献   

14.
The precipitation polymerization of acrylamide/methacrylic acid (AAm/MAA) in ethanol (EtOH) was thoroughly investigated from detecting the homogeneity of the initial solution prior to polymerizations to the final products of the polymerizations. Dynamic light scattering and scanning electron microscopy were employed for the investigations. The solutions of AAm and AAm/acrylic acid (AAm/AA) were homogeneous. However, the solutions of AAm/MAA, AAm/poly(MAA) (PMAA), and AAm/poly(AA) (PAA) were not homogeneous as they are usually considered to be: entities with size distributions of around 150, 40, and 17 nm, respectively, were detected at the polymerization temperature of 60 °C. Accordingly, analogous to the entities that are similar to the structure of micelles formed in the solutions of AAm/PMAA and AAm/PAA because of polymer–AAm interactions, it was suggested that the complexes of AAm/MAA stemming from the molecular interactions, particularly the (lypo‐) hydrophobic interaction, aggregated to form minimonomer droplets at 60 °C. The monodisperse microspheres were prepared only in the AAm/MAA‐EtOH systems, whereas the microspheres were not prepared in the homogeneous AAm‐EtOH systems despite the precipitation of PAAm. The results obtained from various polymerizations showed that the microspheres originated from the polymerization within the minimonomer droplets. A new mechanism was established that describes the processes for the formation of all products possibly generated in the AAm‐MAA‐EtOH polymerization system. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2823–2832, 2004  相似文献   

15.
Organotellurium‐mediated living radical polymerizations (TERPs) and organostibine‐mediated living radical polymerizations (SBRPs) provide well‐defined polymers with a variety of polar functional groups via degenerative chain‐transfer polymerization. The high controllability of these polymerizations can be attributed to the rapid degenerative‐transfer process between the polymer‐end radicals and corresponding dormant species. The versatility of the methods allows the synthesis of AB diblock, ABA triblock, and ABC triblock copolymers by the successive addition of different monomers. This review summarizes the current status of TERP and SBRP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1–12, 2006  相似文献   

16.
A reversible addition–fragmentation chain transfer (RAFT) agent, 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN), was synthesized and applied to the RAFT polymerization of glycidyl methacrylate (GMA). The polymerization was conducted both in bulk and in a solvent with 2,2′‐azobisisobutyronitrile (AIBN) as the initiator at various temperatures. The results for both types of polymerizations showed that GMA could be polymerized in a controlled way by RAFT polymerization with CPDN as a RAFT agent; the polymerization rate was first‐order with respect to the monomer concentration, and the molecular weight increased linearly with the monomer conversion up to 96.7% at 60 °C, up to 98.9% at 80 °C in bulk, and up to 64.3% at 60 °C in a benzene solution. The polymerization rate of GMA in bulk was obviously faster than that in a benzene solution. The molecular weights obtained from gel permeation chromatography were close to the theoretical values, and the polydispersities of the polymer were relatively low up to high conversions in all cases. It was confirmed by a chain‐extension reaction that the AIBN‐initiated polymerizations of GMA with CPDN as a RAFT agent were well controlled and were consistent with the RAFT mechanism. The epoxy group remained intact in the polymers after the RAFT polymerization of GMA, as indicated by the 1H NMR spectrum. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2558–2565, 2004  相似文献   

17.
The use of dormant species has opened a new era in precision polymerization and has changed the concept of living polymerization. The dormant species can be exchanged into the active species via reversible termination or via reversible chain transfer. Professor Mitsuo Sawamoto has greatly contributed to the establishment of the concepts of living cationic and radical polymerizations based on the reversible activation of dormant species. This highlight, dedicated to Professor Sawamoto on his retirement from Kyoto University, provides an overview of reversible or degenerative chain‐transfer (DT) processes, which are effective in controlling all chain‐growth polymerizations, including radical, cationic, anionic, coordination, ring‐opening metathesis, and ring‐opening polymerizations. In addition, structures with novel sequences accessible only by a combination of different propagating species with a common DT agent are reviewed. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 243–254  相似文献   

18.
The application of automated synthetic parallel methods in polymer chemistry is described. A brief overview of all different polymerization techniques that have been used is provided. Furthermore, the equipment and methodologies that were used in our approach for automated parallel polymerization reactions are discussed followed by detailed insight into recent developments on automated cationic ring‐opening polymerization, atom transfer radical polymerization, and emulsion polymerizations. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2425–2434, 2003  相似文献   

19.
The properties of a ligand, including molecular structure and substituents, strongly affect the catalyst activity and control of the polymerization in atom transfer radical polymerization (ATRP). A new tetradentate ligand, N,N′‐bis(pyridin‐2‐ylmethyl‐3‐hexoxo‐3‐oxopropyl)ethane‐1,2‐diamine (BPED) was synthesized and examined as the ligand of copper halide for ATRP of styrene (St), methyl acrylate (MA), and methyl methacrylate (MMA), and compared with other analogous linear tetrdendate ligands. The BPED ligand was found to significantly promote the activation reaction: the CuBr/BPED complex reacted with the initiators so fast that a large amount of Cu(II)Br2/BPED was produced and thus the polymerizations were slow for all the monomers. The reaction of CuCl/BPED with the initiator was also fast, but by reducing the catalyst concentration or adding CuCl2, the activation reaction could be slowed to establish the equilibrium of ATRP for a well‐controlled living polymerization of MA. CuCl/BPED was found very active for the polymerization of MA. For example, 10 mol% of the catalyst relatively to the initiator was sufficient to mediate a living polymerization of MA. The CuCl/BPED, however, could not catalyze a living polymerization of MMA because the resulting CuCl2/BPED could not deactivate the growing radicals. The effects of the ligand structures on the catalysis of ATRP are also discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3553–3562, 2004  相似文献   

20.
Supercritical carbon dioxide (scCO2) is an inexpensive and environmentally friendly medium for radical polymerizations. ScCO2 is suited for heterogeneous controlled/living radical polymerizations (CLRPs), since the monomer, initiator, and control reagents (nitroxide, etc.) are soluble, but the polymer formed is insoluble beyond a critical degree of polymerization (Jcrit). The precipitated polymer can continue growing in (only) the particle phase giving living polymer of controlled well‐defined microstructure. The addition of a colloidal stabilizer gives a dispersion polymerization with well‐defined colloidal particles being formed. In recent years, nitroxide‐mediated polymerization (NMP), atom transfer radical polymerization (ATRP), and reversible addition fragmentation chain transfer (RAFT) polymerization have all been conducted as heterogeneous polymerizations in scCO2. This Highlight reviews this recent body of work, and describes the unique characteristics of scCO2 that allows composite particle formation of unique morphology to be achieved. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3711–3728, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号