首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BF3·OEt2-initiated polymerizations of 2-methylene-1,3-dioxepane gave polymers composed of both ring-retained and ring-opened structures. The ring-opening content increased with an increase in polymerization temperature. Poly(4,7-dimethyl-2-methylene-1,3-dioxepane) propagated slower during BF3·OEt2-initiated polymerization and had a lower ring-opened content than poly(2-methylene-1,3-dioxepane). The type of acid initiator used also affected the amount of ring opening observed. Stronger acids gave less ring opening. Attempted BF3·OEt2-initiated copolymerizations of these seven-membered ring cyclic ketene acetals with isobutyl vinyl ether at room temperature resulted in formation of the two homopolymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 873–881, 1998  相似文献   

2.
This work deals with the synthesis and cationic ring‐opening polymerization behavior of a novel five‐membered cyclic thiocarbonate bearing a spiro‐linked adamantane moiety, tricyclo[3.3.1.13,7]decane‐2‐spiro‐4′‐(1′,3′‐dioxolane‐2′‐thione) ( TC2 ). The cationic ring‐opening polymerization of TC2 did not proceed with trifluoromethanesulfonic acid, methyl trifluoromethanesulfonate, triethyloxonium tetrafluoroborate (Et3OBF4), boron trifluoride etherate (BF3OEt2), titanium tetrachloride, or methyl iodide as the initiator, presumably because of the steric hindrance of the adamantane moiety. However, the cationic ring‐opening copolymerization of TC2 with five‐ or six‐membered cyclic thiocarbonates, that is, 1,3‐dioxolane‐2‐thione, 1,3‐dioxane‐2‐thione, 5‐methyl‐1,3‐dioxane‐2‐thione, or 5,5‐dimethyl‐1,3‐dioxane‐2‐thione, initiated by BF3OEt2 or Et3OBF4, proceeded to afford the corresponding copolymer via a selective ring‐opening direction. The increase in the feed ratio of TC2 in the copolymerization increased the unit ratio derived from TC2 in the copolymer; however, the molecular weight of the copolymer decreased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 699–707, 2003  相似文献   

3.
A star‐shaped copolymer consisting of a hyperbranched poly(3‐methyl‐3‐oxetanemethanol) core and polytetrahydrofuran arms was obtained by a one‐step cationic copolymerization of 3‐methyl‐3‐oxetanemethanol with tetrahydrofuran initiated by BF3·OEt2. Tetrahydrofuran served as a solvent at the earlier stage of the polymerization. After 3‐methyl‐3‐oxetanemethanol was exhausted essentially, the resulting hyperbranched species acted as a macro‐initiator, and initiated the cationic polymerization of tetrahydrofuran. This can be attributed to the large difference in reactivities of the monomers.  相似文献   

4.
This work deals with the cationic ring‐opening polymerization of cyclic thiocarbonates with a norbornene or norbornane moiety, that is, 5,5‐(bicyclo[2.2.1]hept‐2‐ene‐5,5‐ylidene)‐1,3‐dioxane‐2‐thione ( TC1 ) or 5,5‐(bicyclo[2.2.1]heptane‐5,5‐ylidene)‐1,3‐dioxane‐2‐thione ( TC2 ), respectively. The reaction of TC1 initiated by trifluoromethanesulfonic acid (TfOH), methyl trifluoromethanesulfonate (TfOMe), boron trifluoride etherate (BF3OEt2), or triethyloxonium tetrafluoroborate (Et3OBF4) afforded unidentified products; however, TC1 underwent cationic ring‐opening polymerization with methyl iodide as an initiator to afford polythiocarbonate because the propagating end was stabilized by the covalent‐bonding property. The polymerization of TC2 initiated by TfOH, TfOMe, BF3OEt2, or Et3OBF4 afforded polythiocarbonate with good solubility in common organic solvents and a narrow molecular weight distribution because of the absence of a double‐bond moiety. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1698–1705, 2002  相似文献   

5.
A matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectroscopy analysis of polythiourethanes obtained by the cationic ring‐opening polymerization of a six‐membered cyclic thiourethane [3‐benzyltetrahydro‐1,3‐oxazine‐2‐thione (BTOT)] is described. A MALDI‐TOF mass spectrum of a polymer obtained by the polymerization of BTOT with boron trifluoride etherate (BF3OEt2) as the initiator in nitrobenzene at 50 °C for 24 h followed by an end‐capping reaction with diethyldithiocarbamic acid diethylammonium salt showed a series of well‐resolved signals that were assignable to polythiourethanes possessing an amino group at the initiating end and a diethyldithiocarbamate group at the terminating end. In comparison with the MALDI‐TOF mass spectra of polymers obtained by polymerization with trifluoromethanesulfonic acid or methyl trifluoromethanesulfonate, the plausible initiating species in the polymerization with BF3OEt2 was estimated to be a proton, which successively eliminated carbonyl sulfide to produce a secondary amine group at the initiating end. The secondary amine group in the obtained telechelic polymer was converted to a tertiary amine group by a reaction with benzyl bromide in the presence of triethylamine, and this was confirmed by MALDI‐TOF mass spectroscopy. Furthermore, a telechelic polymer with a pyrrole end group was successfully synthesized by the end‐capping reaction of the growing species in the polymerization of BTOT with sodium 1‐pyrrolecarbodithioate. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4281–4289, 2006  相似文献   

6.
The polymers poly[(2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate] (PDMDMA) and four‐armed PDMDMA with well‐defined structures were prepared by the polymerization of (2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate (DMDMA) in the presence of an atom transfer radical polymerization (ATRP) initiator system. The successive hydrolyses of the polymers obtained produced the corresponding water‐soluble polymers poly(2,3‐dihydroxypropyl acrylate) (PDHPA) and four‐armed PDHPA. The controllable features for the ATRP of DMDMA were studied with kinetic measurements, gel permeation chromatography (GPC), and NMR data. With the macroinitiators PDMDMA–Br and four‐armed PDMDMA–Br in combination with CuBr and 2,2′‐bipyridine, the block polymerizations of methyl acrylate (MA) with PDMDMA were carried out to afford the AB diblock copolymer PDMDMA‐b‐MA and the four‐armed block copolymer S{poly[(2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate]‐block‐poly(methyl acrylate)}4, respectively. The block copolymers were hydrolyzed in an acidic aqueous solution, and the amphiphilic diblock and four‐armed block copolymers poly(2,3‐dihydroxypropyl acrylate)‐block‐poly(methyl acrylate) were prepared successfully. The structures of these block copolymers were verified with NMR and GPC measurements. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3062–3072, 2001  相似文献   

7.
For the convenient synthesis of (1→6)‐α‐D ‐glucopyranan, i. e., dextran ( 4 ), ring‐opening polymerization of 1,6‐anhydro‐2,3,4‐tri‐O‐allyl‐β‐D ‐glucopyranose ( 1 ) has been carried out using BF3·OEt2. With a ratio of [BF3·OEt2]/[ 1 ] = 0.5 at 0 °C for 140 h, the yield and Mn of the obtained polymer are 84.0% and 21 700, respectively. The polymer consists of (1→6)‐α‐linked 2,3,4‐tri‐O‐allyl‐D ‐glucopyranose ( 2 ) which is similar to the results for the cationic ring‐opening polymerization of 1,6‐anhydro‐2,3,4‐tri‐O‐methyl‐β‐D ‐glucopyranose and 1,6‐anhydro‐2,3,4‐tri‐O‐ethyl‐β‐D ‐glucopyranose. Polymer 2 was isomerized using tris(triphenylphosphine)‐chlororhodium as the catalyst in toluene/ethanol/water to yield polymeric 2,3,4‐tri‐O‐propenyl‐(1→6)‐α‐D ‐glucopyranan ( 3 ). Deprotection of the propenyl ether linkage of 3 was then performed using hydrochloric acid in acetone to give 4 .  相似文献   

8.
(2→5)‐1,4‐Anhydro‐3‐O‐methyl‐pentitol, which is a novel carbohydrate polymer without an anomeric linkage, was synthesized by cationic cyclopolymerization of 1,2 : 4,5‐dianhydro‐3‐O‐methyl‐xylitol. When BF3·OEt2 was used as the initiator, soluble polymers were obtained in 28 to 50% yield. These polymers have number‐average molecular weights of 1 150 to 2 340 corresponding to an average degree of polymerization of 8.8 to 18.0. It was confirmed by 13C NMR that the resulting polymer mainly consists of 1,4‐anhydro‐3‐O‐methyl‐D L ‐arabinitol units.  相似文献   

9.
Green‐emitting substituted poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)]s ( 6 ) were synthesized via the Wittig–Horner reaction. The polymers were yellow resins with molecular weights of 10,600. The ultraviolet–visible (UV–vis) absorption of 6 (λmax = 332 or 415 nm) was about 30 nm redshifted from that of poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,4‐phenylenevinylene)] ( 2 ) but was only 5 nm redshifted with respect to that of poly[(1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)] ( 1 ). A comparison of the optical properties of 1 , 2 , and 6 showed that substitution on m‐ or p‐phenylene could slightly affect their energy gap and luminescence efficiency, thereby fine‐tuning the optical properties of the poly[(m‐phenylene vinylene)‐alt‐(p‐phenylene vinylene)] materials. The vibronic structures were assigned with the aid of low‐temperature UV–vis and fluorescence spectroscopy. Light‐emitting‐diode devices with 6 produced a green electroluminescence output (emission λmax ~ 533 nm) with an external quantum efficiency of 0.32%. Substitution at m‐phenylene appeared to be effective in perturbing the charge‐injection process in LED devices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1820–1829, 2004  相似文献   

10.
Tri‐block copolymers of linear poly(ethylene glycol) (PEG) and hyperbranched poly‐3‐ethyl‐3‐(hydroxymethyl)oxetane (poly‐TMPO) are reported. The novel dumb‐bell shaped polyethers were synthesized in bulk with cationic ringopening polymerization utilizing BF3OEt2 as initiator, via drop‐wise addition of the oxetane monomer. The thermal properties of the materials were successfully tuned by varying the amount of poly‐TMPO attached to the PEG‐chains, ranging from a melting point of 54 °C and a degree of crystallinity of 76% for pure PEG, to a melting point of 35 °C and a degree of crystallinity of 12% for the polyether copolymer having an average of 14 TMPO units per PEG chain. The materials are of relatively low polydispersity, with Mn/Mw ranging from 1.2 to 1.4. The materials have been evaluated for usage with the energetic oxidizer ammonium dinitramide. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6191–6200, 2009  相似文献   

11.
The 5,6,7,8,9,10‐hexahydro‐2‐methylthiopyrimido[4,5‐b]quinolines 4a , 4b , 4c , 4d , 5a , 5b , 5c , 5d and their oxidized forms 6a , 6b , 6c , 6d , 7a , 7b , 7c , 7d were obtained from the reaction of 6‐amino‐2‐(methylthio)pyrimidin‐4(3H)‐one 2 or 6‐amino‐3‐methyl‐2‐(methylthio)pyrimidin‐4(3H)‐one 3 and α,β‐unsaturated ketones 1a , 1b , 1c , 1d using BF3.OEt2 as catalyst and p‐chloranil as oxidizing agent. Some of the new compounds were evaluated in the US National Cancer Institute (NCI), where compound 5a presented remarkable activity against 46 cancer cell lines, with the most important GI50 values ranging from 0.72 to 18.4 μM from in vitro assays.  相似文献   

12.
3‐Phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine ( m 1 ) underwent cationic ring opening polymerization using BF3·OEt2 in alcoholic solution under mild conditions. The polymerization of m 1 proceeds through an intermediate hemiaminal ether leading mainly to the formation of polybenzoxazines with diphenylmethane bridges, and not only the classical Mannich‐type ones. During the first stages of the reaction, low‐molecular weight soluble oligomers containing benzoxazine rings are formed. At longer polymerization times, the propagation proceeds conventionally through the phenolic active sites. This polymerization mechanism is extensible to other substituted 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazines but fails in the case of 3‐alkyl‐3,4‐dihydro‐2H‐1,3‐benzoxazines or when the phenyl group in Position 3 have a substituent in the p‐position. Spectroscopic studies and kinetic experiments using model reactions and deuterium labeled benzoxazines, allow proposing a plausible different polymerization mechanism. These soluble benzoxazine‐containing polymers can be conveniently processed and impregnated on appropriate substrates before underwent crosslinking producing materials with comparable properties to those of conventional bis‐benzoxazines. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5075–5084  相似文献   

13.
The reaction of amidoximes 1 with 1,1′‐thiocarbonyldiimidazole (TCDI) followed by treatment with silica gel or boron trifluoride diethyl etherate (BF3·OEt2) provided 3‐substituted 4,5‐dihydro‐5‐oxo‐1,2,4‐thiadiazoles 2 in moderate yields. The Lewis acids are considered to promote the rearrangement of the thioxocarbamate intermediates 5 to the thiol carbarn ate intermediates 7 , which cyclize to afford 4,5‐dihydro‐5‐oxo‐1,2,4‐thiadiazoles 2 .  相似文献   

14.
The macroinitiator of a copolymer (PMDBTM) of methyl methacrylate (MMA) and 2‐(dimethylamino)ethyl methacrylate (DAMA) with 4‐benzyloxy‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy (BTEMPO) pendant groups was prepared by the photochemical reaction of tertiary amine groups of the copolymer with benzophenone in the presence of BTEMPO. The radical copolymerization of MMA and DAMA was carried out first with azo‐bis‐isobutyronitrile (AIBN) as an initiator; then, the dimethylamine groups of the copolymer constituted a charge‐transfer complex with benzophenone under UV irradiation, and the methylene of ternary amine and diphenyl methanol radicals were produced. The former was capped by BTEMPO, and the nitroxide (BTEMPO) was attached to the polymeric backbone. The amount of pendant BTEMPO on PMDBTM was measured by 1H NMR. PMDBTM initiated the graft polymerization of styrene via a controlled radical mechanism, and the molecular weight of the PMD‐g‐polystyrene increased with the polymerization time. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 604–612, 2001  相似文献   

15.
Ethene/carbon monoxide copolymers were prepared using the catalyst system Cu(OAc)2/dppp (1,3‐bis(diphenylphosphino)propane)/p‐toluenesulfonic acid (p‐TsOH) or BF3·OEt2/p‐benzoquinone. Pyrolysis‐gas chromatography proves the alternating structure of the copolymers.  相似文献   

16.
Low ceiling temperature, thermodynamically unstable polymers have been troublesome to synthesize and keep stable during storage. In this study, stable poly(phthalaldehyde) has been synthesized with BF3‐OEt2 catalyst. The role of BF3 in the polymerization is described. The interaction of BF3 with the monomer is described and used to maximize the yield and molecular weight of poly(phthalaldehyde). Various Lewis acids were used to investigate the effect of catalyst acidity on poly(phthalaldehyde) chain growth. In situ nuclear magnetic resonance was used to identify possible interactions formed between BF3 and phthalaldehyde monomer and polymer. The molecular weight of the polymer tracks with polymerization yield. The ambient temperature stability of poly(phthalaldehyde) was investigated and the storage life of the polymer has been improved. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1166–1172  相似文献   

17.
采用水热法设计合成了两个新型三维超分子化合物H2L·H2O (1)和[Ag(bpy)2]·HL·H2O (2) (其中bpy=2,2'-联吡啶, H2L=2,4′-二羧基二苯甲酮),晶体结构分析表明,它们均是通过氢键采用不同的连接方式拓展而成。其中,化合物1 是2,4′-二羧基二苯甲酮和水分子通过O–H···O氢键形成的一维梯状链扩展构筑的三维超分子体系;化合物2 则是2,4′-二羧基二苯甲酮和水分子通过两种氢键形成含有一维隧道的三维超分子体系。有趣的是,[Ag(bpy)2]+ 阳离子通过π–π 堆积和弱的Ag···Ag相互作用连在一起,进而以客体形式填充其中。荧光性质研究表明,由于存在bpy的螯合与堆积效应,化合物2相比配体和化合物1,其荧光发射峰发生红移。  相似文献   

18.
Crystallization of 5,5′‐diphenyl‐2,2′‐(p‐phenylene)di‐1,3‐oxazole (POPOP), C24H16N2O2, from chloroform or 1,4‐dioxane yielded crystals in pure and solvated forms, respectively. The solvated crystals of POPOP were found to contain 1,4‐dioxane in a strict 1:2 compound–solvent stoichiometry, C24H16N2O2·C4H8O2, thus being a defined solvent‐inclusion compound. The crystal system is monoclinic in both cases and the asymmetric unit of the cell contains only half of the molecule (plus one dioxane molecule in the case of the solvated structure), owing to the centrosymmetry of the di‐1,3‐oxazole molecule.  相似文献   

19.
A convenient synthesis of phosphonic analogues of pipecolic acid and its heterocyclic analogues is reported. The major step of the elaborated procedure is the introduction of the phosphonate group into the skeleton of the appropriate cyclic amide through N‐acyliminium ions. The former ones were obtained by preparation of the hemiaminals or their methyl ethers from the N‐protected cyclic amides. Finally, the reaction with trimethyl phosphite in the presence of BF3·OEt2 afforded the desired phosphonates, which were converted into phosphonic acids by the hydrolysis of phosphonate moiety with simultaneous cleavage of the nitrogen protecting groups.  相似文献   

20.
The condensation reaction of 2,2′‐diamino‐4,4′‐dimethyl‐6,6'‐dibromo‐1,1′‐biphenyl with 2‐hydroxybenzaldehyde as well as 5‐methoxy‐, 4‐methoxy‐, and 3‐methoxy‐2‐hydroxybenzaldehyde yields 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyl ( 1a ) as well as the 5‐, 4‐, and 3‐methoxy‐substituted derivatives 1b , 1c , and 1d , respectively. Deprotonation of substituted 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls with diethylzinc yields the corresponding substituted zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls ( 2 ) or zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyls ( 3 ). Recrystallization from a mixture of CH2Cl2 and methanol can lead to the formation of methanol adducts. The methanol ligands can either bind as Lewis base to the central zinc atom or as Lewis acid via a weak O–H ··· O hydrogen bridge to a phenoxide moiety. Methanol‐free complexes precipitate as dimers with central Zn2O2 rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号