共查询到20条相似文献,搜索用时 0 毫秒
1.
James R. Hemmer Brian P. Mason Riccardo Casalini 《Journal of Polymer Science.Polymer Physics》2019,57(16):1074-1079
The dynamics of novel ionomers based on a low‐molecular‐weight polybutadiene with zinc acrylate moieties were investigated as a function of the number of ionic bonds by using a combination of calorimetry, dielectric broadband spectroscopy and rheology. We find that the ionic bonds have profound effects on the mechanical properties, including the introduction of a sol–gel transition. However, all techniques consistently indicate that the segmental dynamics of the polymer chains remain largely unaffected, and only very small changes in the glass transition were observed. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1074–1079 相似文献
2.
Polystyrenes with different concentrations of side groups with cyano groups were prepared and complex dielectric constants were measured in the range of the glass transition temperature and the frequency range of 10–2–107 Hz.The GPC and DSC measurements showed that the molecular weight of these polystyrenes was about 10500 g/mole and the glass transition temperatures were 89.5°C for all samples.The dielectric relaxation spectra obtained for the side group polystyrene labels and also the chain-end polystyrene labels prepared before [9] were analyzed to find out the degree of coupling of the chain-end and side-group labels with the cooperative reorientation of the polymeric matrix. The analysis of the spectra was carried out using the analysis method developed by Mansour and Stoll [6].The results obtained showed that both end- and side-group labels are strongly coupled with the segmental reorientation and relax with relaxation times longer than that of the segments.The value of logf
m = (logf
m(label)) – logf
m(matrix)) was obtained from the recently designed comparison diagram suggested by Mansour and Stoll [6, 14]. The value of logf
m depends on the label length in the case of chain-end labels.It was surprising to find that the side groups relax slower than the segments by only 0.9 decades. These results obtained implied that the label relaxes through a multistep relaxation mechanism of the side and end groups and not through a diffusion mechanism of the whole chain. In addition, the effective lengths of the relaxing units were determined using the empirical equation obtained before in the case of rodlike molecules in polyisoprene [7]. 相似文献
3.
The effect of network formation on the secondary (Johari–Goldstein) β‐relaxation was investigated for polyvinylethylene (PVE). Crosslinking affects the segmental (α‐) process in the usual fashion, the networks exhibiting slower and more temperature‐sensitive dynamics. However, the effect on the β‐process is the opposite. The secondary relaxation becomes faster and the activation energy slightly decreases with crosslinking. The strength of the intermolecular cooperativity governing the behavior of the α‐process was assessed using the coupling model, with consistent results obtained from analysis of both the timescale separating the α‐ and β‐relaxations and the activation energy for the latter. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 582–587, 2010 相似文献
4.
Dynamic mechanical results are reported for segmental relaxation of monodisperse polystyrenes (PSs) with molecular weights of 0.7, 3, 18, and 104 kg/mol and bidisperse PSs created from blending pairs of these materials. The data for the monodisperse polymers confirm previous findings; namely, there is an increase in the glass‐transition temperature normalized temperature dependence of the segmental relaxation times (fragility) with increasing molecular weight, along with a breakdown of the correlation between the fragility and the breadth of the relaxation function. For both the monodisperse and bidisperse PSs, the glass‐transition temperature is a single function of the average number of chain ends, independent of the nature of the molecular weight distribution. It is also found that these materials exhibit fragilities that uniquely depend on the number‐average molecular weight, that is, on the concentration of chain ends. In blends with linear PS, cyclic PS with a low molecular weight behaves as a high polymer, similar to its neat behavior, reflecting the overriding importance of chain ends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2604–2611, 2004 相似文献
5.
Maria J. Schroeder Kia L. Ngai C. Michael Roland 《Journal of Polymer Science.Polymer Physics》2007,45(3):342-348
From high‐resolution dielectric spectroscopy measurements on 1,4‐polybutadiene (1,4‐PB), we show that in addition to the structural α‐relaxation and higher frequency secondary relaxations in the spectra, a nearly constant loss (NCL) is observed at shorter times/lower temperatures. The properties of this NCL are compared to those of another chemically similar polymer, 1,4‐polyisoprene. The secondary relaxations in 1,4‐PB include the well‐known Johari‐Goldstein (JG) β‐relaxation and two other higher‐frequency peaks. One of these, referred to as the γ‐relaxation, falls between the JG‐relaxation and the NCL. Seen previously by others, this γ‐relaxation in 1,4‐PB is not the JG‐process and bears no relation to the glass transition. At very low temperatures (<15 K), we confirm the existence of a very fast secondary relaxation, having a weak dielectric strength and an almost temperature‐invariant relaxation time. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 342–348, 2007 相似文献
6.
Günter Sartor Erwin Mayer G. P. Johari 《Journal of Polymer Science.Polymer Physics》1994,32(4):683-689
Differential scanning calorimetry (DSC) of an interpenetrating network polymer of composition 25% polyurethane–75% poly(methyl methacrylate) shows a slowly increasing heat capacity, instead of the usual glass transition endotherm, whose onset temperature is not clearly discernible. On aging of the polymer at several temperatures between 193 and 333 K, an endothermic peak is observed whose onset is in the vicinity of the respective temperature of aging. The area under these peaks increases with increasing aging time at a fixed temperature. The effects are attributed to a very broad distribution of relaxation times, which may be represented by either a sum of discrete structural relaxation times of local network arrangement or by a nonexponential relaxation function which is equivalent to a distribution of relaxation times. In either view the vitrified state of the polymer can be envisaged as containing local structures whose own Tgs extend over a wide range of temperature. Aging decreases the enthalpy and produces an endothermic region which resembles an increase in Cp on heating because of relaxation of that local structure. The interpretation is supported by simulation of DSC scans in which the distribution of relaxation times is assumed to be exceptionally broad and in which aging introduced at several temperatures over a wide range produces endothermic effects (or regions of DSC scans) qualitatively similar to those observed for the interpenetrating network polymer. © 1994 John Wiley & Sons, Inc. 相似文献
7.
A. Kisliuk Y. Ding J. Hwang J. S. Lee B. K. Annis M. D. Foster A. P. Sokolov 《Journal of Polymer Science.Polymer Physics》2002,40(21):2431-2439
Changes in the fast dynamics of polybutadiene (PB) with molecular weight and molecular architecture have been investigated by light and neutron scattering spectroscopy. Differences observed in the fast dynamics of various molecules correlate with differences seen in the value of the glass‐transition temperature (Tg). The segmental and fast dynamics as well as the value of Tg are dependent on the total molecular weight of the molecule but independent of its architecture. In other words, the dynamics of PB depend on the number of segments in the molecule but do not show a significant dependence on how the segments are connected (molecular topology), even for arm molecular weights commensurate with the entanglement molecular weight. Literature data for the Tg's of highly branched, phenolic‐terminated dendritic poly(benzyl ethers) of various core structures exhibit the same trend. There is no explanation for why the segmental motion appears to be sensitive to the total molecular weight of the molecule but is independent of its architecture. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2431–2439, 2002 相似文献
8.
Data are presented for three glass formers, each having an excess wing in the low temperature dielectric loss spectra. Two
polychlorinated biphenyls, whose α relaxations have equivalent temperature dependences, exhibit excess wings that are clearly
different. Comparison of the spectra for glycerol at atmospheric pressure and at P=0.9 GPa reveals a different response of the α relaxation and the excess wing. These findings cannot be reconciled with the
notion that the excess wing is an inherent part of the α relaxation. Interpretation of the spectra as a superposition of distinct
α and β processes, however, is consistent with the observed behavior.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
9.
A. Danch 《Journal of Thermal Analysis and Calorimetry》2008,91(3):733-736
We report on an experiment and new formula revealing dynamic and structural heterogeneity observed in liquids and polymeric
systems. The formula applied to data obtained by mechanical spectroscopy reveals the glass-forming system behaviour giving
the parameters previously postulated. The presented results are compared with data obtained for liquids (oligomers) confined
to nanoporous media. To explain the behaviour of the polymeric systems the three-phase model is considered. 相似文献
10.
A. Kisliuk R. T. Mathers A. P. Sokolov 《Journal of Polymer Science.Polymer Physics》2000,38(21):2785-2790
Light scattering spectra of two polymers, polyisobutylene (PIB) and polystyrene (PS), were analyzed in the broad frequency range at temperatures above the glass transition (Tg ). At high temperatures, the spectra followed the qualitative scenario suggested by mode‐coupling theory (MCT) of the glass transition. The crossover temperature (Tc ) was defined to be approximately 1.35 Tg in PIB and approximately 1.15 Tg in PS. At lower temperatures (T < Tc ), the light scattering spectra deviated strongly from the idealized MCT scenario. Different signs of the dynamic transition around Tc are discussed. The difference between the suggested interpretation and an old idea of the liquid–liquid transition in polymeric liquids is stressed: we describe the transition as purely dynamic in nature. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2785–2790, 2000 相似文献
11.
We have been developing a physical picture on the atomic level of stress relaxation in polymer melts by means of computer simulation of the process in model systems. In this article we treat a melt of freely jointed chains, each with N = 200 bonds and with excluded-volume interactions between all nonbonded atoms, that has been subjected to an initial constant-volume uniaxial extension. We consider both the stress relaxation history σ(t) based on atomic interactions, and the stress history σe(t; NR) based on subdividing the chain into segments with NR bonds each, with each segment regarded as an entropic spring. It is found that at early times σ(t) > σe(t; NR) for all NR, and that, for the remainder of the simulation, there is no value of NR for which σ(t) = σe(t; NR) for an extended period; by the end of the simulation σ(t) has fallen just below the value σe(t; 50). The decay of segment orientation, 〈P2(t; NR)〉, and of bond orientation 〈P2(t; 1)〉, is computed during the simulation. It is found that the decay of the atom-based stress σ(t) is closely related to that of 〈P2(t; 1)〉. This result may be understood through the concept of steric shielding. The change in local structure of the polymer melt during relaxation is also studied. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 143–154, 1998 相似文献
12.
Daniel A. Savin Gary D. Patterson James R. Stevens 《Journal of Polymer Science.Polymer Physics》2005,43(12):1504-1519
The full range of relaxation processes present in optically pure poly‐(n‐hexyl methacrylate) (PHMA) was studied using Rayleigh–Brillouin and photon correlation spectroscopy (PCS). Brillouin shifts, linewidths, and Landau–Placzek ratios (LPR) were measured over the temperature range from ?11 to 21 °C. The Brillouin splitting and linewidth were consistent with previous studies of PHMA, but the LPR was much lower, indicating that the scattered light primarily comes from intrinsic density fluctuations. Relaxation functions of the same PHMA sample were measured using PCS over the temperature range 0.5–52.5 °C. The average relaxation times calculated from a Williams–Watts fit follow a VFT temperature dependence, with the stretching parameter β decreasing with decreasing temperature. The distribution of relaxation times reveals a merging of the α and β‐relaxations over this temperature range, and the temperature dependent width confirms that there are at least two processes with separate temperature dependences. Furthermore, there appears a process at short times in the correlation function window at low temperatures. This upturn at the fastest relaxation times is attributed to the γ‐relaxation present in higher order methacrylate polymers. The effect of the γ‐relaxation is discussed in terms of the dynamic behavior over 12 decades in time. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1504–1519, 2005 相似文献
13.
Norman E. Cooke 《Journal of Polymer Science.Polymer Physics》1991,29(13):1633-1648
A solution to Fick's equation is presented which accurately predicts the transfer of mass out of a polymeric rod or sheet undergoing relaxation by a solvent permeating it by Case II transport. There is a critical length. Before the solvent permeates to this length the diffusible material can diffuse away from the moving boundary faster than it is becoming available at the boundary. Afterward the reverse is true. Five sets of experimental data from three different sources have been used to test the model. The agreement is excellent. 相似文献
14.
Ball-like molecules with strong dipoles (labels) were mixed with technical polystyrene (PS168N) in low concentrations (<0.5% wt) and measured dielectrically in the frequency range 10–2–107 Hz, and the temperature range 100°–135°C (glass relaxation region). The measurements showed that these ball-like molecules relax cooperatively with the polymeric segments with relaxation times lying at the high-frequency tail of the glass process. The activation energy of the main label process is found to be very similar to that of the glass process of the polystyrene segments and also has the same temperature dependence. This finding implies the existence of an additional mode of relaxation in the dielectric spectrum of the glass process of polystyrene (compared to polyisoprene). Considering the different behavior of the ball-like molecules in polystyrene and polyisoprene and the temperature dependence of the half-width of dielectric loss peak in different polymers, we suggest that the polymers could be classified into three classes according to the available dielectric relaxation modes in the glass process. In addition, the label molecules showed a high-frequency local relaxation process. The relaxation strength ratio of the local process (X
local) to the total relaxation strength of the label was found to be dependent on the volume of the label. This phenomenon could supply a new method for the determination of the mean size of the holes (voids) representing the free volume of the host matrix. 相似文献
15.
Jinrong Wu Guangsu Huang Xiaoan Wang Xiaojun He Hangxin Lei 《Journal of Polymer Science.Polymer Physics》2010,48(20):2165-2172
The dynamic mechanical loss tangent (tan δ) peak of polyisobutylene (PIB) reveals an asymmetrical broad structure with a maximum on the high‐temperature side and a shoulder on the low‐temperature side. By comparing with the literature results, it is suggested that the shoulder and the maximum originate from local segmental motion and Rouse modes, respectively. Blending polystyrene (PS) with PIB has two effects on the relaxation behavior of PIB. One effect is that the maximum and the shoulder are both suppressed, but the maximum is suppressed to a higher extent. After PS forms the continuous phase, the maximum becomes lower than the shoulder, and even almost disappears when the weight ratio of PIB/PS is under 20/80. The other effect is that, before PS forms the continuous phase, the temperature position of the maximum (Ts) and that of the shoulder (Tα) remains constant, but after PS forms the continuous phase, both of them are reduced with decreasing particle size of the PIB phase, in a way similar to nano‐confinement effect on the depression of glass transition temperature. The depression amplitude of Ts is larger than that of Tα. The aforementioned two effects can be interpreted in terms of the limited expansion of free volume of the PIB phase exerted by the PS phase, which affects the maximum to a higher extent than the shoulder because Rouse modes are more sensitive to the free volume than local segments. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010 相似文献
16.
A. Alegría L. Goitiandia J. Colmenero 《Journal of Polymer Science.Polymer Physics》2000,38(16):2105-2113
We report on the interpretation of the thermally stimulated depolarization current (TSDC) experiments, with partial polarization methods, on the dielectric α‐relaxation. The results obtained on polyvinyl acetate are rationalized on the basis of the Boltzmann superposition principle in combination with a Kohlrausch–Williams–Watts (KWW) time decay of the polarization (with the β exponent essentially temperature independent and equal to the value determined by conventional dielectric methods at Tg). From this analysis of the global TSDC spectrum we found a complex temperature dependence of the KWW relaxation time, which is Arrhenius‐like at the lowest temperatures but crosses over to the Vogel–Fulcher behavior observed above Tg in the temperature range of the TSDC peak. On the basis of these results, we found the way of predicting the TSDC spectra measured after partial polarization procedures. We found that, the distribution of activation energies and compensation behavior deduced by following the standard way of analysis are associated to the assumption of an Arrhenius‐like temperature dependence of the α‐relaxation time in the temperature range explored by TSDC. Therefore we conclude that both the distribution of activation energies and compensation behavior obtained by following the standard way of analysis do not give a proper physical picture of the α‐relaxation of glassy polymers around the glass‐transition temperature. Our results also show that the partial polarization TSDC methods are not able to give insight about the actual existence or not of a distribution of relaxation times at the origin of the nonexponentiality of the α‐relaxation of polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2105–2113, 2000 相似文献
17.
We report measurements of the temperature and pressure dependence of ultrasonic modulus and specific volume in polystyrene between 50 and 280°C and applied pressures up to 775 bar. The volumetric glass transition temperature is found to vary linearly with pressure. Furthermore, it coincides with the temperature at which the velocity of sound and the attenuation in the material show pronounced change from solid-like to liquid-like behavior. The storage and loss moduli are analyzed within the Havriliak-Negami model and very good agreement is found over the entire temperature and pressure ranges. Using the Vogel-Tammann-Fulcher equation for the relaxation time, the Kauzmann temperature Tk and the fragility parameter D of polystyrene were determined from fits to the data. Tk is also a linear function of pressure, but D is constant over the whole pressure range. The value of D allows us to classify polystyrene among the fragile-glass formers. © 1996 John Wiley & Sons, Inc. 相似文献
18.
Atactic polystyrene, both side group and main chain deuterated, was investigated by inelastic neutron scattering in a wide temperature range around the glass transition from 2 to 450 K. In the glass the Boson peak position is only very weakly influenced by the deuteration of the phenyl group. In the neighborhood of the glass transition temperatureT
g we find a fast relaxation process similar to other glasses. The onset of the fast relaxation in polystyrene, however, is observed already at temperaturesT
g — 200 K. Results from partially deuterated polystyrene suggest a change of the phenyl ring dynamics already far belowT
g. 相似文献
19.
Molecular dynamics (MD) simulations of bulk atactic polystyrene have been performed in a temperature range from 100 K to 650 K at atmospheric pressure. Local translational mobility has been investigated by measuring the mean square translational displacements of monomers. The long-time asymptotic slope of these dependencies is 0.54 at T>Tg, showing Rouse behavior. Cross-over from motion in the cage to Rouse like dynamics has been studied at T>Tg with a characteristic crossover time follows a power law behavior as a function of T, as predicted by mode-coupling theory (MCT). Local orientational mobility has been studied via the orientational autocorrelation functions, ACFs, (Legendre polynomials of the first and second, order) of both the main-chain and side-group bonds. The relaxation times of the orientational α-relaxation follow the same power law (γ∼2.9) as the characteristic translational diffusion time. Below T>Tg both types of dynamics are described by the same activated law. The ACFs time-distribution functions reveal the existence of activated local rearrangements already above T>Tg. 相似文献