首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of new side‐chain cholesteric elastomers derived from cholesteryl 4‐(10‐undecylen‐1‐yloxy)‐4′‐ethoxybenzoate and phenyl 4,4′‐bis(10‐undecylen‐1‐yloxybenzoyloxy‐p‐ethoxybenzoate) was synthesized. The chemical structures of the monomers were confirmed by elemental analyses, Fourier transform infrared, and 1H NMR and 13C NMR spectra. The mesomorphic properties of elastomers were investigated with differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the content of the crosslinking unit on the phase behavior of the elastomers was examined. Monomer M1 showed a cholesteric phase, and M2 displayed smectic and nematic phases. The elastomers containing <15 mol % of the crosslinking units revealed reversible mesomorphic phase transition, wide mesophase temperature ranges, and high thermal stability. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3315–3323, 2005  相似文献   

2.
Several new side‐chain liquid crystalline (LC) polysiloxanes and elastomers ( IP ‐ VIP ) bearing fluorinated mesogenic units and crosslinking mesogens were synthesized by a one‐step hydrosilylation reaction with poly(methylhydrogeno)siloxane, a fluorine‐containing LC monomer 4′‐undec‐10‐enoyloxy‐biphenyl‐4‐yl 4‐fluoro‐benzoate and a crosslinking LC monomer 4′‐(4‐allyloxy‐benzoxy)‐biphenyl‐4‐yl 4‐allyloxy‐benzoate. The chemical structures and LC properties of the monomers and polymers were characterized by use of various experimental techniques such as FTIR, 1H‐NMR, EA, TGA, DSC, POM and XRD. The effect of crosslinking mesogens on mesomorphic properties of the fluorinated LC polymers was studied as well. The obtained polymers and elastomers were soluble in many solvents such as toluene, tetrahydrofuran, chloroform, and so forth. The temperatures at which 5% weight loss occurred (Td) were greater than 250°C for all the polymers, and the weight of residue near 600°C increased slightly with increase of the crosslinking mesogens in the fluorinated polymer systems. The samples IP , IIP , IIIP and IVP showed both smectic A and nematic phases when they were heated and cooled, but VP and VIP exhibited only a nematic mesophase. The glass transition temperature (Tg) of polymers increased slightly with increase of crosslinking mesogens in the polymer systems, but the mesophase–isotropic phase transition temperature (Ti) and smectic A–nematic mesophase transition temperature (TS‐N) decreased slightly. It suggests that the temperature range of the mesophase became narrow with the increase of crosslinking mesogens for all the fluorinated polymers and elastomers. In XRD curves, the intensity of sharp reflections at low angle decreased with increase of crosslinking mesogens in the fluorinated polymers systems, indicating that the smectic order derived from fluorinated mesogenic units should be destroyed by introduction of more crosslinking mesogens. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
New side‐chain liquid‐crystalline polymers containing both cholesteric and thermochromic side groups were synthesized. Their chemical structures were confirmed with elemental analyses and Fourier transform infrared, proton nuclear magnetic resonance, and carbon‐13 nuclear magnetic resonance spectra. The mesogenic properties and phase behavior were investigated with differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The effect of the concentration of dye side groups on the phase behavior of the polymers was examined. The polymers showed smectic or cholesteric phases. Those polymers containing less than 20 mol % dye groups had good solubility, reversible phase transitions, wider mesophase temperature ranges, and higher thermal stability. The experimental results demonstrated that the isotropization temperature and mesophase temperature ranges decreased with an increasing concentration of dye groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3870–3878, 2004  相似文献   

4.
Chiral monomer (M1 ), mesogenic and non-mesogenic crosslinking agents (C1 and C2 ), and the corresponding liquid crystalline elastomers (P1 and P2 series), have been synthesised. Their chemical structures have been characterised by Fourier transform infrared or 1H nuclear magnetic resonance and their phase behaviour investigated by differential scanning calorimetry, polarising optical miscoscopy, thermo-gravimetric analysis (TGA) and X-ray diffraction. The effect of the crosslinking unit on the phase behaviour of the elastomers has been studied. M1 showed a cholesteric oily streak and focal conic texture. C2 exhibited a nematic enantiotropic thread-like and schlieren texture, and a monotropic fan-shaped texture in the SA phase. Due to the introduction of the mesogenic crosslinking unit, elastomers, P2-1 ?P2-5 , exhibited a cholesteric phase, while elastomers, P1-1 ?P1-4 , derived from a non-mesogenic crosslinking unit, exhibit a SA phase. As the content of the crosslinking unit increased, the T g of the P1 series initially decreased and then increased, and the T i of the series decreased. In the P2 series the T g increased, but the T i initially increased and then decreased. TGA confirmed that all the elastomers had improved thermal stability.  相似文献   

5.
Liquid‐crystalline (LC) ionomers containing 2–15 mol % calcium ions were synthesized by the exchange reaction between the nematic LC copolymer, bearing oxycyanobiphenyl mesogenic groups, and the carboxyl groups of acrylic acid, with calcium acetate. The incorporation of 2–3 mol % Ca ions in the LC copolymer leads to some rise in the clearing point and glass‐transition temperature. A further increase in the concentration of metal ions (>5 mol %) is accompanied by induction of the smectic A phase where clearing point and glass‐transition temperatures keep constant values. Phase behavior of the LC ionomers may be understood on the basis of a structural model that considers the dual role of calcium ions in a polymer matrix. Metal ions act as points of noncovalent electrostatic binding of the polymer chains and are capable of forming larger ionic associates (multiplets). The comparison of the phase behavior of sodium and calcium containing LC ionomers shows that the formation of ionic links may lead to the growth of structure defects suppressing a positive influence of charged groups on the mesophase clearing temperature. The orientation behavior of the LC ionomers in the magnetic field was studied. It was shown that the incorporation of calcium ions (3 mol %) in the LC copolymer matrix leads to the growth of orientation order parameter S of the nematic phase. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3953–3959, 2001  相似文献   

6.
A series of side‐chain liquid‐crystal polymers, poly[6‐[4‐(4′‐n‐alkyl benzoateazo)phenoxy]‐hexylmethacrylate]s (PMAzoCOORm, m = 1, 2, 3, 4, 5, 6, 8, 10, 14, and 18) have been prepared by two synthetic methods. The chemical structure of the monomers was confirmed by 1H NMR and mass spectrometry. The molecular characterizations of the polymers were performed with 1H NMR and gel permeation chromatograph. The phase behaviors of polymers were investigated by the combination of techniques including differential scanning calorimetry, polarized optical microscopy, and small‐angle X‐ray scattering. For m = 1, 2, 3, 4, 5, and 6, the polymers exhibited a monosmectic A phase in which the smectic layer period was almost identical to the side‐chain length. In addition, for m = 2, 3, 4, and 5, they presented the monosmectic C phase in low temperature; moreover, the tilt angle increased from 23.3 to 40.5°. For m = 8, 10, 14, and 18, the polymers showed a bilayer smectic A phase in which the layer spacing was larger than a fully extended side chain but less than two extended chains. On the other hand, for the clearing point, with the increasing of m, it first decreased, and then increased. All of these indicated that the length of alkyl tails played an important role in the phase behaviors of these polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2759–2768  相似文献   

7.
In this work we prepared a nematic monomer (4′‐allyloxybiphenyl 4′‐ethoxybenzoate, M1 ), a chiral crosslinking agent (isosorbide 4‐allyloxybenzoyl bisate, M2 ) and a series of new side chain cholesteric liquid crystalline elastomers derived from M1 and M2 . The chemical structures of the monomers and polymers were confirmed by FTIR and 1H NMR spectroscopy. The mesomorphic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy and X‐ray diffraction. The effect of the content of the crosslinking unit on phase behaviour of the elastomers is discussed. Polymer P1 showed a nematic phase, P2 P7 showed a cholesteric phase; P6 formed a blue Grandjean texture over a broad temperature range 145–209.6°C, with no changed on the cooling. Polymers P4 P7 , with more than 6?mol?% of chiral crosslinking agent, gave rise to selective reflection. Elastomers containing less than 15?mol?% of the crosslinking units displayed elasticity, reversible phase transition with wide mesophase temperature ranges, and high thermal stability. Experimental results demonstrated that, with increasing content of crosslinking agent, the glass transition temperatures first fell and then increased; the isotropization temperatures and mesophase temperature ranges decreased.  相似文献   

8.
The synthesis of new side-chain cholesteric elastomers derived from a cholesteric monomer and mesogenic crosslinking agent is presented. The chemical structures of the monomers obtained were confirmed by elemental analyses, FT-IR, 1H NMR, and 13C NMR. The mesomorphic properties and thermal stability were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), polarizing optical microscopy (POM), and X-ray diffraction (XRD) measurements. M1 showed cholesteric phase, and M2 displayed enantiotropic nematic phase and monotropic smectic phase. The elastomers containing less than 12 mol% of the crosslinking units revealed reversible mesomorphic phase transition, wide mesophase temperature ranges, and high thermal stability.  相似文献   

9.
In this article, we report the synthesis and characterization of a new end‐on side‐chain liquid crystalline polymer (SCLCP), poly[4‐(4′‐alkoxyphenyloxymethylene)styrene] [denoted as Poly(n‐POMS), where n is the carbon number of the alkyl tail, n = 2, 4, 6, 8, 12, 16], with the flexible rod‐like mesogenic side‐chain directly attached to the polymer backbone without flexible spacer. The polymer was obtained by using free radical polymerization. The chemical structures of Poly(n‐POMS) and the corresponding monomer were characterized using various techniques with satisfactory analysis data. A combination analysis of differential scanning calorimetry, polarized light microscopy, small angle X‐ray scattering, and wide‐angle X‐ray diffraction has been conducted to investigate the phase behavior of Poly(n‐POMS). Poly(2‐POMS), Poly(4‐POMS), and Poly(6‐POMS) are amorphous. Poly(8‐POMS) develops partially into the liquid crystal phase, and Poly(12‐POMS) and Poly(16‐POMS) self‐assembly into the smectic A (SmA) phase. Upon increasing temperature, the phase transition of Poly(16‐POMS) follows the sequence of SmA1 ? SmA2 ? isotropic (I), which may be attributed to the conformation isomerization of the flexible rod‐like mesogens. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Two series of vinyl‐terminated, side‐chain liquid‐crystalline polyethers containing 4,4′‐biphenyl and 2,6‐naphthalene moieties as mesogenic cores with several contents of vinyl crosslinkable groups were synthesized by chemically modifying poly(epichlorohydrin) with mixtures of saturated and vinyl‐terminated mesogenic acids. In most cases the degree of modification was over 90%. The polymers were characterized by chlorine analysis, IR and 1H and 13C NMR spectroscopies, viscometry, size exclusion chromatography/multi‐angle laser light scattering, and thermogravimetric analysis. The liquid‐crystal behavior of all the synthesized polymers was examined by differential scanning calorimetry, polarized optical microscopy (POM), and X‐ray diffraction on mechanically oriented samples. The crosslinking of most polymers was done by peroxide‐type initiators, which generally led to liquid‐crystal elastomers. The mesophase organization was maintained on the crosslinked materials, as confirmed by POM and X‐ray diffraction. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3384–3399, 2003  相似文献   

11.
A novel photoactive, liquid‐crystalline, hyperbranched benzylidene polyester (PAHBP) was synthesized from a dilute solution of an A2 photoactive monomer [bis(4‐hydroxybenzylidene)‐4‐phenyl cyclohexanone] and a B3 monomer (1,3,5‐benzene tricarboxylic acid chloride) by the solution polycondensation method in the presence of pyridine as a condensing agent. PAHBP was thoroughly characterized by Fourier transform infrared, 1H and 13C NMR, ultraviolet–visible spectrometry, and gel permeation chromatography. The inherent viscosity of the polymer was 0.35 dL/g in tetrahydrofuran. The degree of branching was 0.53, which confirmed the branched architecture of the polymer. Furthermore, thermogravimetric analysis, differential scanning calorimetry, and polarized optical microscopy were used to examine the thermal stability and thermotropic liquid‐crystalline properties of the hyperbranched polyester. The polymer exhibited a nematic mesophase over a wide range of temperatures. The photoreactivity of PAHBP was studied by photolysis under ultraviolet light. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 53–61, 2006  相似文献   

12.
Photoactive hyperbranched benzylidene liquid‐crystalline polyester (PAHBP) and photoactive linear benzylidene liquid‐crystalline polyester (PALBP) were synthesized by solution polycondensation with pyridine as an acid acceptor. PAHBP and PALBP were thoroughly characterized with Fourier transform infrared, 1H and 13C NMR, ultraviolet–visible spectrophotometry, fluorescent spectrophotometry, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, and polarized optical microscopy. Both polymers exhibited nematic mesophase. The glass‐transition temperature and liquid‐crystalline isotropic temperature of PAHBP were higher than those of PALBP. During photolysis under ultraviolet light, both polymers underwent an intermolecular photocycloaddition reaction, and the photoactivity of PAHBP was faster than that of PALBP; this was further confirmed by photoviscosity studies. PALBP and PAHBP were fluorescent in nature. An increase in the fluorescence intensity with the time of ultraviolet‐light irradiation was observed for both PAHBP and PALBP. The rate of increase in the fluorescence intensity of the linear analogue (PALBP) was higher than that of the hyperbranched polymer (PAHBP). This behavior could be attributed to the attainment of better planarity in the case of the linear one but not in the case of PAHBP because of the rapid crosslinking of PAHBP leading to an irregular architecture. This behavior was further confirmed by the calculation of the steric energy from corresponding model compounds. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3986–3994, 2006  相似文献   

13.
Three series of semiflexible and rigid main‐chain polyesters containing photoreactive mesogenic units derived from p‐phenylenediacrylic acid (PDA) and cinnamic acid have been synthesized by high‐temperature polycondensation. The thermal and mesomorphic properties of the polymers have been determined. The photochemical behavior of polymer P‐[1]‐T, which contains a PDA unit, has been studied both in solution and in films. In solution, [2+2] photocycloaddition, E/Z photoisomerization, and photo‐Fries rearrangement can take place. In contrast, the dominant process in spin‐coated films is the [2+2] photocycloaddition reaction, which causes crosslinking of the polymer. In films, the photochemistry and induction of anisotropy are strongly influenced by the aggregation of the PDA phenylester unit. A dichroism of about 0.2 has been induced in films by irradiation with linearly polarized UV light, and thus the capability of these films to induce optical anisotropy and align liquid crystals has been demonstrated. Liquid‐crystalline cells have been made with polarized irradiated films of P‐[1]‐T as aligning layers. A commercial liquid‐crystalline mixture has been used for this study, and a similar liquid‐crystalline order determined by polarized Fourier transform infrared to a commercial cell with rubbed polyimide as an aligning layer has been detected. Because of crosslinking of the irradiated P‐[1]‐T photoaligning layer, the photoinduced anisotropy is stable at high temperatures, and the liquid‐crystalline molecules are insoluble in the irradiated polymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4907–4921, 2005  相似文献   

14.
Rigid, helical polyisocyanodipeptides derived from alanine (PIAAs) that form lyotropic liquid‐crystalline (LC) phases in tetrachloroethane are presented. An investigation by optical microscopy between crossed polarizers demonstrated that PIAAs prepared by the polymerization of isocyanodipeptide monomers with an activated tetrakis isocyanide nickel(II) catalyst could form cholesteric LC phases in tetrachloroethane in concentrations between 18 and 30 wt %. Cholesteric LC phases that were formed in solutions of greater than 25 wt % displayed a reversal of the cholesteric helix upon annealing at 50 °C. Diastereomeric PIAA mixtures displayed cholesteric LC behavior only when the PIAAs had the same helix screw sense. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 981–988, 2007  相似文献   

15.
We used readily available commercial reagents and well‐known procedures to synthesize a series of aromatic imine mesogenic diglycidylester compounds with dimeric architectures. The compounds obtained were characterized by spectroscopic techniques. Their liquid‐crystalline behavior was examined by differential scanning calorimetry, hot‐stage polarized optical microscopy (POM), and wide‐angle X‐ray scattering (WAXS) and related to the different structures that varied in the length of the central spacer. All the compounds exhibited nematic mesophases with the exception of the dimer with a three‐methylene central spacer that did not reveal liquid‐crystalline character. We investigated the crosslinking of the synthesized compounds and obtained liquid‐crystalline thermosets (LCTs) with several primary aromatic diamines in stoichiometric ratios or a tertiary amine as a catalyst. The curing processes were measured by calorimetry, and the thermal stability of the LCTs was evaluated by thermogravimetry. The ordered character of the LCTs was confirmed by POM and WAXS. Finally, the mechanical characterization of the LCTs obtained was examined by dynamic mechanical thermal analysis. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4344–4356, 2002  相似文献   

16.
A novel side‐chain liquid‐crystalline polyimide (SLCPI) was prepared via copolycondensation from 3,5‐diamino‐benzonic‐4′‐biphenyl ester, 4,4′‐diamino‐ biphenyl ether, and 3,3′,4,4′‐oxydiphthalic dianhydride. The energy‐minimized structure and liquid crystallinity of SLCPI were investigated by molecular modeling, differential scanning calorimetry (DSC), wide‐angle X‐ray scattering, and polarized optical microscopy, respectively. The results indicated that this polyimide (PI) with side‐chain mesogenic units exhibited a nematic NI phase. Because of the in situ self‐reinforcement of side‐chain mesogenic units, the improved tensile strength and modulus of PI films reached 270% and 300%, respectively. The coefficient of thermal expansion of films decreased by 40%. DSC and thermogravimetric analyses indicated that the phase‐transition temperature of SLCPI was above 240 °C, and the 5% weight‐loss temperature was above 520 °C. Moreover, copolycondensation of two diamines with dianhydride and incorporation of pendent mesogenic units diminished the regularity and symmetry of main chains; as a result, SLCPI exhibits good film processability. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 554–559, 2003  相似文献   

17.
Chiral side‐chain liquid‐crystalline polysiloxanes ( PS‐1 , PS‐2 , PS‐3 , PS‐4 , PS‐5 , PS‐6 ) bearing fluorinated units and sulfonic acid groups were synthesized with poly(methylhydrogeno)siloxane, cholest‐5‐en‐3‐ol(3β)‐4‐(2‐propenyloxy)benzoate, and 3‐trifluoromethyl‐phenyl 3‐sulfo‐4‐undec‐10‐ enoyloxy‐benzoate. The effects of fluorinated units and sulfonic acid groups on characteristic of liquid‐crystalline properties were studied. PS‐1 , PS‐2 , and PS‐3 exhibited both smectic and cholesteric mesophases, while PS‐4 , PS‐5 , and PS‐6 exhibited only cholesteric mesophase. As the polymers contained more fluorinated units and sulfonic acid groups, segregation of the fluorinated segment to the surface and aggregation of hydrogen bonding should occur. Therefore, the highly ordered lamellar mesogen–siloxane matrix systems should be disturbed severely, suggesting that PS‐4 , PS‐5 , and PS‐6 show no smectic phase. The maximum reflection bands become broad and shifted slightly to long wavelength from PS‐1 to PS‐6 . Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
In this work we prepared a nematic monomer (4'-allyloxybiphenyl 4'-ethoxybenzoate, M1), a chiral crosslinking agent (isosorbide 4-allyloxybenzoyl bisate, M2) and a series of new side chain cholesteric liquid crystalline elastomers derived from M1 and M2. The chemical structures of the monomers and polymers were confirmed by FTIR and 1H NMR spectroscopy. The mesomorphic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy and X-ray diffraction. The effect of the content of the crosslinking unit on phase behaviour of the elastomers is discussed. Polymer P1 showed a nematic phase, P2-P7 showed a cholesteric phase; P6 formed a blue Grandjean texture over a broad temperature range 145-209.6°C, with no changed on the cooling. Polymers P4-P7, with more than 6 mol % of chiral crosslinking agent, gave rise to selective reflection. Elastomers containing less than 15 mol % of the crosslinking units displayed elasticity, reversible phase transition with wide mesophase temperature ranges, and high thermal stability. Experimental results demonstrated that, with increasing content of crosslinking agent, the glass transition temperatures first fell and then increased; the isotropization temperatures and mesophase temperature ranges decreased.  相似文献   

19.
Narrow fractions of a side‐chain acrylate oligomer/polymer with phenyl benzoate side chains are separated in a broad range of the degree of polymerization (7 ≤ Pw ≤ 149). An examination of the phase behavior of the obtained fractions has shown that only the longer macromolecules can form the two‐dimensional K (TDK) mesophase, whereas oligomers of a shorter main chain form the conventional nematic phase only. A critical Pw value has been observed to be necessary for the TDK mesophase formation. The temperatures and enthalpies of liquid‐crystalline phase transitions have been studied as a function of the molar mass, and the phase‐growth kinetics for the TDK phase have been studied with an Avrami treatment. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2352–2360, 2005  相似文献   

20.
A homologous series of side‐chain liquid crystalline (SCLC) poly{[N‐[10‐((4‐(((4′‐n‐hexyloxy)benzoyl)oxy)phenoxy)carbonyl)‐n‐decyl]maleimide]‐co‐[N‐(n‐octadecyl)maleimide]} [(ME6)‐co‐(MI‐18)] random copolymers with various MI‐18 contents have been synthesized and their properties studied. The high content in threo‐disyndiotactic sequences of the maleimide main chain seems responsible for the stability of the highly ordered smectic mesophase. The relationship between structure and composition on thermotropic mesophase was investigated by polarizing optical microscopy, differential scanning calorimetry, and X‐ray diffraction. For copolymers with mesogenic unit contents less than ~0.655 molar fraction the transition from (SA) texture to isotropic (I) is maintained, as shown by the TCl, ΔHCl and ΔSCl amounts and intermolecular spacing 4.42–4.53 Å and intralayer correlation lengths of 44.2–45.2 Å. The layer thickness does not appreciably depend on copolymer composition. However, copolymers with non‐mesogenic comonomer MI‐18 molar contents larger than >0.655 molar fraction X(M), are no longer liquid crystalline materials, despite its packing is preserved without any detectable appearance of birefringence. Thermodynamic boundaries of the liquid crystalline state have been established through a phase diagram. The properties of this n‐hexyloxy pendant group‐based series are compared to those of the analogous materials containing methoxy pendant groups (ME1), and differences are accounted for in terms of the local side‐chain packing within the mesophase. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号