首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The miscibility and hydrogen‐bonding interactions of carbon dioxide and epoxy propane copolymer to poly(propylene carbonate) (PPC)/poly(p‐vinylphenol) (PVPh) blends were investigated with differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and X‐ray photoelectron spectroscopy (XPS). The single glass‐transition temperature for each composition showed miscibility over the entire composition range. FTIR indicates the presence of strong hydrogen‐bonding interassociation between the hydroxyl groups of PVPh and the oxygen functional groups of PPC as a function of composition and temperature. XPS results testify to intermolecular hydrogen‐bonding interactions between the oxygen atoms of carbon–oxygen single bonds and carbon–oxygen double bonds in carbonate groups of PPC and the hydroxyl groups of PVPh by the shift of C1s peaks and the evolution of three novel O1s peaks in the blends, which supports the suggestion from FTIR analyses. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1957–1964, 2002  相似文献   

2.
3.
Hydrogen bonding interactions, phase behavior, crystallization, and surface hydrophobicity in nanostructured blend of bisphenol A‐type epoxy resin (ER), for example, diglycidyl ether of bisphenol A (DGEBA) and poly(ε‐caprolactone)‐block‐poly(dimethyl siloxane)‐block‐poly(ε‐caprolactone) (PCL–PDMS–PCL) triblock copolymer were investigated by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, transmission electron microscopy, small‐angle X‐ray scattering, and contact angle measurements. The PCL–PDMS–PCL triblock copolymer consisted of two epoxy‐miscible PCL blocks and an epoxy‐immiscible PDMS block. The cured ER/PCL–PDMS–PCL blends showed composition‐dependent nanostructures from spherical and worm‐like microdomains to lamellar morphology. FTIR study revealed the existence of hydrogen bonding interactions between the PCL blocks and the cured epoxy, which was responsible for their miscibility. The overall crystallization rate of the PCL blocks in the blend decreased remarkably with increasing ER content, whereas the melting point was slightly depressed in the blends. The surface hydrophobicity of the cured ER increased upon addition of the block copolymer, whereas the surface free energy (γs) values decreased with increasing block copolymer concentration. The hydrophilicity of the epoxy could be reduced through blending with the PCL–PDMS–PCL block copolymer that contained a hydrophobic PDMS block. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 790–800, 2010  相似文献   

4.
Blends of poly(2‐vinyl pyridine)‐block‐poly(methyl methacrylate) (P2VP‐b‐PMMA) and poly(hydroxyether of bisphenol A) (phenoxy) were prepared by solvent casting from chloroform solution. The specific interactions, phase behavior and nanostructure morphologies of these blends were investigated by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this block copolymer/homopolymer blend system, it is established that competitive hydrogen bonding exists as both blocks of the P2VP‐b‐PMMA are capable of forming intermolecular hydrogen bonds with phenoxy. It was observed that the interaction between phenoxy and P2VP is stronger than that between phenoxy and PMMA. This imbalance in the intermolecular interactions and the repulsions between the two blocks of the diblock copolymer lead to a variety of phase morphologies. At low phenoxy concentration, spherical micelles are observed. As the concentration increases, PMMA begins to interact with phenoxy, leading to the changes of morphology from spherical to wormlike micelles and finally forms a homogenous system. A model is proposed to describe the self‐assembled nanostructures of the P2VP‐b‐PMMA/phenoxy blends, and the competitive hydrogen bonding is responsible for the morphological changes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1894–1905, 2009  相似文献   

5.
Poly(hydroxyether of phenolphthalein) (PPH) was synthesized through the polycondensation of phenolphthalein with epichlorohydrin. It was characterized by Fourier transform infrared (FTIR) spectroscopy, NMR spectroscopy, and differential scanning calorimetry (DSC). The miscibility of the blends of PPH with poly(ethylene oxide) (PEO) was established on the basis of the thermal analysis results. DSC showed that the PPH/PEO blends prepared via casting from N,N‐dimethylformamide possessed single, composition‐dependent glass‐transition temperatures. Therefore, the blends were miscible in the amorphous state for all compositions. FTIR studies indicated that there were competitive hydrogen‐bonding interactions with the addition of PEO to the system, which were involved with OH…O?C〈, ? OH…? OH, and ? OH vs ether oxygen atoms of PEO hydrogen bonding, that is both intramolecular and intermolecular, between PPH and PEO). Some of the hydroxyl stretching vibration bands significantly shifted to higher frequencies, whereas others shifted to lower frequencies, and this suggested the formation of hydrogen bonds between the pendant hydroxyls of PPH and ether oxygen atoms of PEO, which were stronger than the intramolecular hydrogen bonding between hydroxyls and carbonyls of PPH. The FTIR spectra in the range of carbonyl stretching vibrations showed that the hydroxyl‐associated carbonyl groups were partially set free because of the presence of the competitive hydrogen‐bonding interactions. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 466–475, 2003  相似文献   

6.
Miscibility and hydrogen bonding interaction have been investigated for the binary blends of poly(butylene adipate‐co‐44 mol % butylene terephthalate)[P(BA‐co‐BT)] with 4,4'‐thiodiphenol (TDP) and poly(ethylene‐ oxide)(PEO) with TDP; and the ternary blends of P(BA‐co‐BT)/PEO/TDP by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The DSC results indicated that the binary blends of P(BA‐co‐BT)/TDP and PEO/TDP were miscible because each blend showed only one composition‐dependent glass‐transition over the entire range of the blend composition. The formation of intermolecular hydrogen bonds between the hydroxyl groups of TDP and the carbonyl groups of P(BA‐co‐BT), and between the hydroxyl groups of TDP and the ether groups of PEO was confirmed by the FTIR spectra. According to the glass‐transition temperature measured by DSC, P(BA‐co‐BT) and PEO, their binary blends were immiscible over the entire range of blend composition, however, the miscibility between P(BA‐co‐BT) and PEO was enhanced through the TDP‐mediated intermolecular hydrogen bonding interaction. It was concluded that TDP content of about 5–10% may possibily enhance miscibility between P(BA‐co‐BT) and PEO via a hydrogen bonding interaction. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2971–2982, 2004  相似文献   

7.
The thermal behavior and intermolecular interactions of blends of poly(3‐hydroxybutyrate) (PHB) and maleated PHB with chitosan were studied with differential scanning calorimetry, Fourier transform infrared (FTIR), wide‐angle X‐ray diffraction (WAXD), and X‐ray photoelectron spectroscopy (XPS). The differences in the two blend systems with respect to their thermal behavior and intermolecular interactions were investigated. The melting temperatures, melting enthalpies, and crystallinities of the two blend systems gradually decreased as the chitosan content in the blends increased. Compared with that of the PHB component with the same composition, the crystallization of the maleated PHB component was more intensively suppressed by the chitosan component in the blends because of the rigid chitosan molecular chains and the intermolecular hydrogen bonds between the components. FTIR, WAXD, and XPS showed that the intermolecular hydrogen bonds in the blends were caused by the carbonyls of PHB or maleated PHB and chitosan aminos, and their existence depended on the compositions of the blends. The introduction of maleic anhydride groups onto PHB chains promoted intermolecular interactions between the maleated PHB and chitosan components. In addition, the intermolecular interactions disturbed the original crystal structures of the PHB, maleated PHB, and chitosan components; this was further proven by WAXD results. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 35–47, 2005  相似文献   

8.
A model multiblock copolymer based on (Poly dimethylsiloxane) (PDMS),–4, 4′‐diphenylmethanediisocyanate (MDI)–(poly ethylene glycol) (PEG) was synthesized by employing two step growth polymerization technique. The effect of annealing on microphase separation of the copolymer surface and bulk, surface composition, hydrogen‐bonding and some properties was investigated by AFM, SAXS, XPS, FTIR, contact angle measurement, and protein adsorption experiment, respectively. It was found that increasing the annealing temperature availed formation of microphase separation and surface enrichment of PDMS, which was accompanied by increase in average interdomain spacing, long period, and the crystallizing degree in the hard domains. But the best microphase separated structure seemed to occur at the annealing temperature of 140 °C; exorbitant annealing temperature might demolish the ordered structure. The annealing temperature dependence of microphase separation was further confirmed by the changes in urea hydrogen‐bonding and melting points characterized by FTIR and DSC, respectively. Protein adsorption experiments revealed that all annealed copolymer films possessed the low protein adsorption. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 208–217, 2007  相似文献   

9.
以三氯甲烷/二甲基亚砜为混合溶剂,采用溶液共混的方法制备PANI-DBSA/PAN导电薄膜.采用扫描电镜、差示扫描量热仪、红外光谱及广角X射线衍射分析研究了共混体系的相容性及相态结构.结果表明,PANI-DBSA在PAN基体中分布均匀,聚集尺寸为纳米级,其较均匀的分布及较小的聚集尺寸使其出现较低的逾渗阈值(低于4%);PANI-DBSA/PAN的共混体系只有一个玻璃化转变温度,居于纯PAN和PANI-DBSA之间,表明两者之间具有良好的相容性;FTIR分析证实PANI-DBSA与PAN之间存在氢键相互作用,氢键发生在PANI-DBSA的氨基与PAN共聚物中的羰基之间,这两种聚合物之间的氢键相互作用是导致PANI-DBSA与PAN之间良好相容性的内因.  相似文献   

10.
Ionic interactions have been shown to enhance polymer–polymer miscibility in several highly dissimilar blend systems. In some cases, the miscibility is due to proton transfer from an acidic site on one polymer to a basic site on another, which leads to ion–ion interactions. Studies that have focused on the formation of ionomer blends from highly dissimilar materials, such as fluorocarbons and hydrocarbons or aromatics and aliphatics of widely differing glass transitions, have shown that in the absence of ionic interactions, these materials are immiscible. In this study, we have used Fourier transform infrared (FTIR) spectroscopy techniques, both qualitatively and semiquantitatively, to evaluate the extent of the proton‐transfer mechanism in the enhancement of miscibility in perfluorinated acid copolymer/poly(ethyl acrylate) blends. The perfluorinated acid copolymer contains sulfonic acid groups, whereas the poly(ethyl acrylate) has been modified by the introduction of various amounts of 4‐vinyl pyridine groups as comonomers in the polymer chains. The proton‐transfer mechanism in this case consists of the transfer of the proton on the sulfonic acid group to the nitrogen on the pyridine group, forming a pyridinium cation and a sulfonate anion pair. FTIR has been used to distinguish between the pyridine and pyridinium groups through their absorption bands at 1416 and 1642 cm?1, respectively. The relative intensities of these bands, as a function of the molar concentration of the pyridine comonomers in the blend, provides a direct quantitative indication of the extent of proton transfer occurring in the system. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1814–1823, 2003  相似文献   

11.
Three different biodegradable polyesters, namely, polycaprolactone (PCL), polybutylene succinate (BIONOLLE), and a copolyester of adipic acid, terephthalic acid, and 1,4‐butanediol (EASTAR) were melt‐blended using a twin‐screw extruder. The percentage composition of each of the aforementioned polymers was varied to obtain different blends, and the mechanical properties were evaluated. Selected blends showed significant improvement in tensile strength as compared with the individual polymers used to prepare the blend. The compatibility between the polymer phases was examined via Fourier transform infrared (FTIR) and nuclear magnetic resonace (NMR) spectroscopy as well as dynamic mechanical analysis. FTIR and NMR data confirmed the occurrence of hydrogen‐bonding and ester‐interchange reactions. Thermal properties and changes in crystallinity of the blends were examined with differential scanning calorimetry and X‐ray diffraction. A considerable increase in crystallinity was shown by the blend system containing BIONOLLE/PCL. The morphology of the blends was observed and correlated to the improved mechanical properties of the blend system. Results revealed an intermediate multiphase system in which a significant degree of mixing was achieved through the chemical interaction of the functional groups present, while using the twin‐screw extruder. Significant improvement in mechanical properties of some blends was observed, and information about the miscibility of these polyesters is provided. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2003–2014, 2002  相似文献   

12.
Poly(N‐acryloyl‐N′‐methylpiperazine) (PAMP) forms complexes with four strong acidic polymers, namely, poly(styrenesulfonic acid), poly(vinylphosphonic acid), poly(acrylic acid) and poly(methacrylic acid) in ethanol/water (1:1) solution. The nature of interpolymer interactions in various complexes was studied by Fourier transform infrared (FTIR) spectroscopy and X‐ray photoelectron spectroscopy (XPS). Both the carbonyl oxygen and the amide nitrogen of PAMP are involved in hydrogen‐bonding interactions. Some of the amine nitrogens of PAMP are protonated and therefore PAMP also interacts with the acidic polymers through ionic interactions. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 501–508, 2000  相似文献   

13.
Polymer blends of poly(vinylphenol) (PVPh) and poly(styrene‐co‐vinylphenol) with poly(p‐acetoxystyrene) (PAS) were prepared by solution casting from tetrahydrofuran solution. The thermal properties and hydrogen bonding of the blends were investigated by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy. Although hydrogen bonding existed between the PVPh and PAS segments, the experimental results indicated that PVPh is immiscible with PAS as shown by the existence of two glass‐transition temperatures over the entire composition range by DSC. This phenomenon is attributed to the strong self‐association of PVPh, intramolecular screening, and functional group accessibility effects of the PVPh/PAS blend system. However, the incorporation of an inert diluent moiety such as styrene into the PVPh chain renders the modified polymer to be miscible with PAS. Copolymers containing between 16 and 51 mol % vinylphenol were fully miscible with PAS according to DSC studies. These observed results were caused by the reduction of the strong self‐association of PVPh and the increase of the interassociation between PVPh and PAS segments with the incorporation of styrene on the PVPh chain. According to the Painter‐Coleman association model, the interassociation equilibrium constant of PVPh/PAS blends was determined by a model compound and polymer blend. Good correlation between these two methods was obtained after considering the intramolecular screening and functional group accessibility effect in the polymer blend. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1661–1672, 2002  相似文献   

14.
Hydrogen‐bonding interactions between bisphenol A (BPA) and two proton‐accepting polymers, poly(2‐vinylpyridine) (P2VPy) and poly(N‐vinyl‐2‐pyrrolidone) (PVP), were examined by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The Flory–Huggins interaction‐energy densities of BPA/P2VPy and BPA/PVP blends were determined by the melting point depression method. The interaction parameters for both BPA/P2VPy and BPA/PVP blend systems were negative, demonstrating the miscibility of BPA with P2VPy as well as PVP. The miscibility of ternary BPA/P2VPy/PVP blends was examined by DSC, optical observation, and solid‐state nuclear magnetic resonance spectroscopy. The experimental phase behavior of the ternary blend system agreed with the spinodal phase‐separation boundary calculated using the determined interaction‐energy densities. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1125–1134, 2002  相似文献   

15.
The fully amorphous films of highly syndiotactic poly[(R,S)‐3‐hydroxybutyrate] (s‐PHB)/atactic poly(4‐vinylphenol) (PVPh) blends show reversible thinning/thickening phenomena at 37 °C in aqueous medium. On the other hand, isotactic poly[(R)‐3‐hydroxybutyrate] (i‐PHB)/PVPh blend film, in which i‐PHB blend component was partially crystalline, did not show any thinning/thickening phenomena under the same conditions. To elucidate the factors influencing these phenomena, the structure and molecular interaction in these blends were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry, and wide‐angle X‐ray diffraction. The FTIR spectra indicated that the ester carbonyl of PHB and the phenolic hydroxyl of PVPh formed hydrogen bonds in both the thinned and thickened s‐PHB/PVPh blend films. The blend composition, intermolecular hydrogen‐bonding interaction, crystallization behavior, miscibility, and the glass‐transition temperature of the blends affected the thinning/thickening phenomena. Some other polyesters such as poly(?‐caprolactone), poly (L‐lactic acid), atactic poly(D,L‐lactic acid), and poly(ethylene terephthalate) had no ability to exhibit thinning/thickening phenomena in water at 37 °C when they were blended with PVPh. This result implies that s‐PHB/PVPh is the rare example with the ability to show reversible thinning/thickening phenomena. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2736–2743, 2002  相似文献   

16.
The effects of several low molecular weight compounds with hydroxyl groups on the physical properties of poly(ε‐caprolactone) (PCL) were investigated by Fourier transform infrared (FTIR) spectroscopy and high‐resolution solid‐state 13C NMR. PCL and 4,4′‐thiodiphenol (TDP) interact through strong intermolecular hydrogen bonds and form hydrogen‐bonded networks in the blends at an appropriate TDP content. The thermal and dynamic mechanical properties of PCL/TDP blends were investigated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis, respectively. The melting point of PCL decreased, whereas both the glass‐transition temperature and the loss tangent tan δ of the blend increased with an increase in TDP content. The addition of 40 wt % TDP changed PCL from a semicrystalline polymer in the pure state to a fully amorphous elastomer. The molecules of TDP lost their crystallizability in the blends with TDP contents not greater than 40 wt %. In addition to TDP, three other PCL blend systems with low molecular weight additives containing two hydroxyl groups, 1,4‐dihydroxybenzene, 1,4‐di‐(2‐hydroxyethoxy) benzene, and 1,6‐hexanediol, were also investigated with FTIR and DSC, and the effects of the chemical structure of the additives on the morphology and thermal properties are discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1848–1859, 2000  相似文献   

17.
The intermolecular hydrogen‐bonding interaction and miscibility between enzymatically prepared novel polyphenols [poly(bisphenol A) and poly(ptert‐butyl phenol)] and poly(ε‐caprolactone) (PCL) were investigated as a function of composition by Fourier transform infrared spectroscopy (FTIR) and DSC. The blend films of PCL and polyphenols were prepared by casting polymer solution. The FTIR spectra clearly indicated that PCL and polyphenols interact through strong intermolecular hydrogen bonds formed between the PCL carbonyls and the polyphenol hydroxyl groups. The melting point and degree of crystallinity of the PCL component decreased with an increased polyphenol content. A single glass‐transition temperature was observed for the blend, and its value increased with the content of polyphenol, indicating that PCL and polyphenols are miscible in the amorphous state. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2898–2905, 2001  相似文献   

18.
Miscibility and strong specific interactions that occurred within homoblends of poly(styrene‐co‐4‐vinylpyridine) containing 15 mol % of 4‐vinylpyridine (PS4VP15) and poly(styrene‐co‐methacrylic acid) containing 15 mol % of methacrylic acid (PSMA15) have been examined by Fourier Transform infrared spectroscopy and DSC. The observed positive deviation of the glass transition temperature of the blends from the linear average line, was analyzed by the frequently used theoretical conventional approaches including the one very recently proposed by Brostow. A better fit was obtained when this latter is used. A reasonable agreement with experimental values was also obtained when the theoretical fitting parameter free method developed by Coleman, is applied to predict the composition dependence of the Tg of this system. A thermodynamic analysis of hydrogen bonding in this system was carried using the Painter‐Coleman association model and the variation of the Gibbs function of mixing and its different contributions and corresponding phase diagrams as a function of temperature and composition were estimated. This analysis predicted PSMA15 to be miscible with PS4VP15 in the whole composition range up to 150 °C. Above this temperature, a partial miscibility is predicted when the PS4VP15 is in excess. The DSC results are in agreement with these predictions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 923–931, 2009  相似文献   

19.
The unusual eutectic crystallization behavior in the poly(ε‐caprolactone) (PCL) and 3‐pentadecylphonel (PDP) binary blends was investigated by differential scanning calorimetry and Fourier transform infrared (FTIR) spectroscopy. A eutectic system was found with the eutectic composition at 60 wt % PDP and the eutectic melting temperature at 35 °C. The melting process of the blend at the eutectic composition was studied by in situ FTIR. The concurrence of the melting of PCL and PDP crystallites and the sequential formation of hydrogen bonding interaction between PDP molecules and PCL chains were traced. It was also found that a further increase in temperature above the eutectic melting temperature would impair the hydrogen bonding and increase the content of nonassociated phenol hydroxyl group. The semicrystalline morphology of blends affected by the composition was also investigated. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1015–1023, 2009  相似文献   

20.
In this communication, we reported the sequence variation of stereocomplex crystals (SC) and homocrystals (HC) in poly(l ‐lactic acid)/poly(d ‐lactic acid) (PLLA/PDLA) racemic blends melts. It was evidenced that the emerging sequence of the SC and HC depends on the hydrogen bond formation in the melt, and the hydrogen bond is required for the stereocomplexation in PLLA/PDLA racemic blend. First, by combining a commercial fast‐scan chip‐calorimeter (Flash DSC 1) and micro‐FTIR, we found that hydrogen bonds were formed in the melt during cooling at 2.5 K/s, but not at 3000 K/s. Second, annealing the melt without hydrogen bonds at 100 °C led to HC emerging first, while annealing the melt with hydrogen bonds resulted in SC emerging at first. Third, the crystallization kinetics of the racemic blends after cooling to predefined Tc at 2.5 or 3000 K/s further verified that the hydrogen bonding can be inhibited effectively by cooling the racemic blends isotropic melt at fast enough rate. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 83–88  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号