首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To prepare calixarene‐based polymers with proton transport ability, the calix[4]arene derivatives with one polymerizable group at the upper rim were first prepared via selective nitration, amination, and acrylamidation of calix[4]arene. Two methods, solution polymerization and emulsion polymerization, were then employed to carry out the copolymerization of these derivatives with other monomers such as styrene, vinyl acetate, or methyl methacrylate. Transport experiments show that the resulting calixarene‐based polymers have a very good ability to transport protons. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6259–6266, 2004  相似文献   

2.
Uniformly sized, molecularly imprinted polymers (MIPs) of bisphenol A (BPA), one of many potential endocrine disruptors, were prepared by selective surface modification and immobilized at intervals of functional monomers with 4,4′‐methylenebisphenol as a pseudotemplate. MIPs for BPA were prepared with 4‐vinyl pyridine immobilized at the most effective interval and with ethylene glycol dimethacrylate monomer as a functional crosslinker. The prepared MIPs were surface‐modified with both polar and ionic monomers with different modification methods and then evaluated to reveal their selectivity and retention characteristics. Some of the modified MIPs showed significant selectivity for BPA retention when they were used as high‐performance liquid chromatography (HPLC) stationary phases, in comparison with ordinary MIPs. This effect of molecular imprinting was retained even after the surface modification of MIPs. The MIPs employed as pretreatment media for a column‐switching HPLC system provided a detection limit as low as 1 ng/L (ppt) by electrochemical detection. Actual samples, including Suwannee River natural organic matter (NOM), were analyzed for BPA, and BPA was quantitatively detected in NOM even with the combination with widely used UV detection because of the effective removal of interference afforded by an effective surface modification of the MIPs. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2048–2060, 2005  相似文献   

3.
Thermal degradation behavior of six alkyl vinyl ketone (RVK) polymers and copolymers with styrene was investigated by means of infrared spectrometry (IR), thermogravimetry (TG), derivative TG (DTG), and differential scanning calorimetry (DSC). The observed TG curves of the RVK polymers changed with both structure of their substituents and initiators used, and the temperature of the beginning of weight loss for the radical polymers increased in the order: poly(methyl isopro-penyl ketone) < poly(methyl vinyl ketone) < poly(ethyl vinyl ketone) < poly(isopropyl vinyl ketone) < poly(tert-butyl vinyl ketone). From the infrared spectral determination of thermally degraded polymers, the formation of a cyclized structure was observed. It was also found from the results of thermal degradation of the RVK copolymers with styrene at 210° C that the formation of such a cyclized unit tended to increase in the order: tert-butyl vinyl ketone < isopropyl vinyl ketone < ethyl vinyl ketone < methyl vinyl ketone.  相似文献   

4.
In this study, the molecularly imprinted polymers (MIPs) of capsaicin are prepared by bulk polymerization (MIPs1), precipitation polymerization (MIPs2), and surface imprinting technology based on SiO2/Fe3O4 particles (MIPs3), respectively. MIPs are characterized by scanning electron microscopy and fourier transform infrared spectroscopy. The adsorption kinetics and thermodynamics of these composites are also investigated to estimate their capacity to rebind capsaicin. The adsorption kinetics show that the adsorption process of MIPs1 is fitted to pseudo first‐order kinetic model, while the kinetic properties of MIPs2 and MIPs3 are well described by pseudo second‐order kinetic model. Adsorption thermodynamics analysis indicated that there are two kinds of binding sites with different affinity in each MIPs, whereas only one kind of binding site in non‐imprinted polymers. All adsorption isotherms of MIPs are fitted to Freundlich models, illustrated that binding sites are distributed heterogeneously in the surface of the materials, and the adsorption might occur in the multimolecular layers. Comparisons of experimental data of three MIPs are achieved and the results show that MIPs3 has the best affinity and absorption capacity to capsaicin. Moreover, the MIPs3 maintain the magnetic properties of Fe3O4 particles, which will be applied to the rapid separation of capsaicin from chili peppers samples. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 157–164  相似文献   

5.
Molecularly imprinted polymers (MIPs) from polymerizable Lewis acidic zinc(II)cyclen complexes and ethylene glycol dimethyl acrylate have been prepared. For the imprinting process the template molecule creatinine is reversibly coordinated to the zinc atom. The high strength of this interaction allows analyte binding to the MIP from aqueous solution with high affinity. Its pH dependence is used for controlled guest release with nearly quantitative analyte recovery rate. The binding capacity and selectivity profile of the MIP remains constant through several pH controlled binding and release cycles. MIPs missing a suitable metal binding site showed no significant affinity for thymine or creatinine. Flavin adsorbs nonspecifically to all polymers. The imprinting process reverses the binding selectivity of zinc(II)cyclen for creatinine and thymine from 1:34 in homogeneous solution to 3.5:1 in the MIP. Scatchard plot analysis of creatinine binding isotherms reveals uniform binding of the imprint, with fits indicating a one-site model; however, similar analysis for thymine indicate high and low affinity sites. This corresponds to unrestricted coordination sites freely accessible for thymine, e.g., at the polymer surface, and misshaped imprinted sites, which still can accommodate thymine. More than 50% of all binding sites exclusively bind creatinine and are not accessible to thymine. The binding properties of a copolymer of polymerizable zinc(II)cyclen and ethylene glycol dimethyl acrylate missing the creatinine template, which match the binding selectivity of the complex in solution, confirm that the origin of altered selectivities is the imprinting process. With binding ability at physiological pH, the MIPs are applicable for tasks in medicinal diagnostics or biotechnology. Imprinted zinc(II)cyclen complexes provide, like a metalloenzyme binding motif, high binding affinity by reversible coordination while the surrounding macromolecule determines binding selectivity.  相似文献   

6.
The first application of atom transfer radical “bulk” polymerization (ATRBP) in molecular imprinting is described, which provides molecularly imprinted polymers (MIPs) with obvious imprinting effects towards the template, very fast binding kinetics, and an appreciable selectivity over structurally related compounds. In comparison with the MIP prepared via the normally used traditional “bulk” free radical polymerization (BFRP), the MIPs obtained via ATRBP showed somewhat lower binding capacities and apparent maximum numbers Nmax for high‐affinity sites as well as quite similar binding association constants Ka for high‐affinity sites and high‐affinity site densities, in contrast with the previous reports (e.g., nitroxide/iniferter‐mediated “bulk” polymerization provided MIPs with improved properties). This is tentatively ascribed to the occurrence of rather fast gelation process in ATRBP, which greatly restricted the mobility of the chemical species, leading to a heavily interrupted equilibrium between dormant species and active radicals and heterogeneous polymer networks. In addition, the general applicability of ATRBP was also confirmed by preparing MIPs for different templates. This work clearly demonstrates that applying controlled radical polymerizations (CRPs) in molecular imprinting not always benefits the binding properties of the resultant MIPs, which is of significant importance for the rational use of CRPs in generating MIPs with improved properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 532–541, 2010  相似文献   

7.
The association behavior of telechelic hydrogen‐bonded poly(ether ketone) (PEK) and polyisobutylene (PIB) polymers and the formation of a new class of pseudo‐block copolymers is reported. The attachment of complementing hydrogen bonds (thymine/2,6‐diaminotriazine and cytosine/2,6‐diaminotriazine) onto the respective PIB and PEK polymers leads to a dramatic increase in the miscibility between the normally immiscible PEK and PIB polymers. The structure formation in the liquid state was studied by dynamic NMR spectroscopy as well as in the solid state via solid‐state NMR‐spectroscopy, DSC, and TEM methods. The polymers form a nanophase structure with a periodicity of 70 nm with the microphase separation occurring specifically within the donor–acceptor pair with the higher binding constant (thymine/2,6‐diaminotriazine) and not within the weaker bonded cytosine/2,6‐diaminotriazine pair. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 162–172, 2004  相似文献   

8.
The irradiation (λ > 400 nm) in air of a copolymer of phenyl vinyl ketone with 4-vinylbenzil (VBZ) containing 1.5 wt % VBZ structural units in film, followed by the thermal decomposition of the resulting pendant benzoyl peroxide groups, leads to crosslinking. The subsequent irradiation of the crosslinked polymer at 366 nm results in the cleavage of the poly(phenyl vinyl ketone) chain between the junction points of the polymer network through a Norrish type II reaction. Therefore, poly(phenyl vinyl ketone-co-4-vinylbenzil) represents a novel type of photoresist based on polymer network decrosslinking. The process involves three steps: photogeneration of peroxide, crosslinking by its thermal decomposition, and subsequent photodecrosslinking of the polymer network. This material provides positive-tone images after UV exposure (λ > 330 nm) and development in an organic medium such as isopropyl methyl ketone. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 765–771, 2004  相似文献   

9.
Bifunctional fluorescent molecular oxoanion probes based on the benzoxadiazole (BD) chromophore are described which integrate a thiourea binding motif and a polymerizable 2-aminoethyl methacrylate unit in the 4,7-positions of the BD core. Concerted charge transfer in this electron donor-acceptor-donor architecture endows the dyes with strongly Stokes shifted (up to >250 nm) absorption and fluorescence. Binding of electron-rich carboxylate guests at the thiourea receptor leads to further analyte-induced red-shifts of the emission, shifting the fluorescence maximum of the complexes to ≥700 nm. Association constants for acetate are ranging from 1–5×105 M−1 in acetonitrile. Integration of one of the fluorescent probes through its polymerizable moiety into molecularly imprinted polymers (MIPs) grafted from the surface of submicron silica cores yielded fluorescent MIP-coated particle probes for the selective detection of antibiotics containing aliphatic carboxylate groups such as enoxacin (ENOX) at micromolar concentrations in highly polar solvents like acetonitrile.  相似文献   

10.
Molecularly imprinted polymers (MIPs), based on photografting surface-modified polystyrene beads as matrices, were prepared with acrylamide as the functional monomer, bovine hemoglobin as the template molecule and N, N′-methylene bisacrylamide as the crosslinker in a phosphate buffer. The results of IR, scanning electron microscope (SEM) and elemental analyses demonstrated the formation of a grafting polymer layer on the polystyrene-bead surface. Subsequent removal of the template left behind cavities on the surface of the polymer matrix with a shape and an arrangement of functional groups having complementary binding sites with the original template molecule. The adsorption studies showed that the imprinted polymers have a good adsorption capacity and specific recognition for bovine hemoglobin as the template molecule. Our results demonstrated that the polymer prepared via the photografting surface-modified method exhibited better selectivity for the template. Attempts to employ the new method in molecular imprinting techniques may introduce new applications for MIPs and facilitate probable protein separation and purification. __________ Translated from Chemical Journal of Chinese Universities, 2008, 29(1): 64–70  相似文献   

11.
Hyperbranched vinyl polymers with high degrees of branching (DBs) up to 0.43 functionalized with numerous pendent allene groups have been successfully prepared via reversible addition fragmentation chain transfer polymerization of a state‐of‐art allene‐derived asymmetrical divinyl monomer, allenemethyl methacrylate (AMMA). The gelation did not occur until high monomer conversions (above 90%), as a result of the optimized reactivity difference between the two vinyl groups in AMMA. The branched structure was confirmed by a combination of a triple‐detection size exclusion chromatography (light scattering, refractive index, and viscosity detectors) and detailed 1H NMR analyses. A two‐step mechanism is proposed for the evolution of branching according to the dependence of molecular weight and DB on monomer conversion. Controlled radical polymerization proceeds until moderate conversions, mainly producing linear polymers. Subsequent initiation and propagation on the polymerizable allene side chains as well as the coupling of macromolecular chains generate numerous branches at moderate‐to‐high monomer conversions, dramatically increasing the molecular weight of the polymer. AMMA was also explored as a new branching agent to construct poly(methyl methacrylate)‐type hyperbranched polymers by its copolymerization with methyl methacrylate. The DB can be effectively tuned by the amount of AMMA, showing a linear increase trend. The pendent allene groups in the side chains of the copolymers were further functionalized by epoxidation and thiol‐ene chemistry in satisfactory yields. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2959–2969  相似文献   

12.
Radical polymerization behavior of a vinyl substituted cyclic carbonate, 4‐phenyl‐5‐vinyl‐1,3‐dioxoran‐2‐one ( 1 ), is described. Radical polymerization of 1 proceeded through selective vinyl polymerization to produce polymers bearing carbonate groups in the side chain, in contrast to that of an oxirane analogue of 1 , 1‐phenyl‐2‐vinyl oxirane that proceeds via the selective ring‐opening fashion. Although the homopolymerization of 1 produce polymers in relatively lower yield, copolymerizations effectively provided cyclic carbonate‐containing copolymers. Nucleophilic addition of primary amines to the resulting homopolymers and copolymers produced the corresponding multifunctional polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 584–592, 2005  相似文献   

13.
陈朗星  刘雨星  何锡文  张玉奎 《色谱》2015,33(5):481-487
以表面修饰双键的Fe3O4@SiO2纳米颗粒为基体,以萘夫西林(nafcillin)为模板,甲基丙烯酸(MAA)为单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,采用三步升温聚合法合成了核壳结构的萘夫西林磁性分子印迹聚合物。采用傅里叶变换红外光谱仪(FT-IR)、透射电子显微镜(TEM)、X射线衍射仪(XRD)和振动样品磁强计(VSM)对制备的印迹聚合物微球进行了表征,得到的磁性印迹聚合物微球的粒径在320 nm左右,大小均匀,分散性较好,可以在外加磁场下与溶剂实现快速分离。对磁性印迹和非印迹聚合物进行了吸附性能研究,结果表明该印迹聚合物微球对模板分子具有很高的吸附容量(50.7 mg/g),特异性识别性能良好(印迹因子为2.46),有望应用于实际样品中萘夫西林残留量的富集分析。  相似文献   

14.
Functional polystyrene (PS) crosslinked microbeads were developed by dispersion polymerization as fluorescent molecularly imprinted polymers (MIPs) having cavities with specific recognition sites. The functional azobenzene molecule modified with pyridine was self‐assembled with Pyrenebutyric acid (template molecules), and introduced during the second stage of dispersion polymerization of polystyrene. The template molecule was removed from MIP by Soxhlet using acetonitrile as solvent. Non imprinted polymer (NIP) having no template was also synthesized for comparative study. Fluorescence spectroscopy could be used as a tool to derive insight into the location of the template molecules on the MIP or NIP. The template molecules were adsorbed on the surface of the NIPs during binding studies, which was evidenced from the pyrene excimeric emission observed at 440 nm. The template binding efficiency of the NIPs were much lower compared to MIPs. Pyrene emission from MIP upon rebinding showed typical monomeric emission in the 375–395 nm range, confirming its location in isolated cavities. In rebinding studies of the template molecules, the MIPs selectively took up the template for which the cavity was designed, which demonstrated their selectivity towards template molecules. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1558–1565  相似文献   

15.
Inorganic–organic hybrid polymers have been developed and tested for evaluation in optical and electrical applications. Although hybrid inorganic–organic polymers can be synthesized by sol–gel chemistry at first, the physical properties of hybrid inorganic–organic polymers are changed during thin film-making processes, that is, photocuring and thermal curing. To investigate the effect of photoinitiator on the material properties during processing, a model system containing methacrylic groups as organically polymerizable units was selected. The conversion of CC double bond of methacrylic groups depending on some kinds of photoinitiator quantities was characterized by Fourier transform infrared spectroscopy. It was confirmed to correlate the degree of CC double bond conversion with the refractive indices. Thermodynamically, the enthalpy of the photopolymerization of hybrid polymer was investigated by UV–DSC. UV–DSC spectra showed the exothermic nature of photopolymerization of ORMOCER® to be in dependence of photoinitiator quantities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1979–1986, 2004  相似文献   

16.
A novel doubly polymerizable functional norbornene, 5‐(methacryloyloxyethylamino carboxylmethyl)bicyclo[2.2.1]hept‐2‐ene (NBMOACM), was prepared. The ring‐opening metathesis polymerization (ROMP) of NBMOACM was carried out to prepare polymers with crosslinkable side chains with the Grubbs catalyst. No gel formation occurred during the ROMP of NBMOACM. The 1H NMR spectrum of poly(NBMOACM) showed broad signals between 5.10 and 5.40 ppm, corresponding to the vinyl protons of the cis and trans double bonds of the ring‐opened polymer. Increasing the ratio of the monomer concentration to the catalyst concentration resulted in the formation of higher molecular weight polymers. Poly(NBMOACM) was incorporated into poly(methyl methacrylate) [poly(MMA)] to produce AB crosslinked materials. These crosslinked materials [1 wt % poly(NBMOACM), 10% weight loss temperature = 300 °C in air] had higher thermal stability than pure poly(MMA) (10% weight loss temperature = 276 °C in air). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6287–6298, 2006  相似文献   

17.
New insight into modeling non-covalently imprinted polymers   总被引:1,自引:0,他引:1  
Three series of polymers were carefully formulated with increasing amounts of template while keeping the polymer components constant. The number of binding sites (N) and the number average association constant (K(n)()) were calculated for each polymer in a series, using equations adapted from the literature describing molecularly imprinted polymers (MIPs). The trends of N and K(n)() for each series of polymers, which were graphed versus percent template, suggest multiple functional monomers in the binding sites of noncovalent MIPs. This new insight has implications for understanding the underlying mechanisms for the formation of binding sites in the MIPs studied.  相似文献   

18.
This study concentrates on the production of covalent molecular imprint polymers (MIPs) as highly selective sorbents for nortriptyline (NOR), a representative tricyclic antidepressant (TCA). The functionalized template contains a polymerizable 4-vinylphenyl carbamate moiety used to bind the template molecule to the polymer matrix. Polymerization with a cross-linker followed by hydrolytic cleavage of the labile carbamate functionality leaves an MIP with selective binding sites capable of binding template through hydrogen bonding interactions. Demonstrated chromatographically through a "selection index", these MIPs showed high selectivity for the template molecule (NOR) among a library of structurally similar compounds. The recognition was found to correlate with structural similarity to the template compound. A direct comparison between covalent and non-covalent molecular imprinting strategies reveals a great deal of improvement in the peak shape of the retained compound resulting from covalent imprinting (evidenced by peak asymmetry factors A.).  相似文献   

19.
Here we report the chemoenzymatic synthesis and recognition function of glycoconjugate polymers carrying nonreducing disaccharides [α-D -glucopyranosyl-(1-1)-α-D -glucopyranoside (trehalose) and α-D -galactopyranosyl-(1-1)-α-D -glucopyranoside (Gal-type trehalose)]. The lipase-catalyzed esterification of the disaccharides with divinyl sebacate is completely selective at the primary Glc 6-OH position of trehalose and at the Gal 6-OH position of Gal-type trehalose. The resultant vinyl esters can be polymerized to yield glycoconjugate polymers with poly(vinyl alcohol) backbones. The interactions of the glycoconjugate polymers with lectins (concanavalin A and Bandeiraera simplicifolia) are amplified because of the glycocluster effect. The polymer carrying pendant α-D -galactopyranosyl-(1-1)-α-D -glucopyranoside shows inhibition activity against Shiga toxin-1 based on a stereochemical structure similar to that of globosyl Gb2 disaccharide. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4598–4606, 2004  相似文献   

20.
Block copolymers with tunable functional groups were obtained through the postfunctionalization of poly(dimethylsiloxane)‐b‐poly(methylvinylsiloxane) diblock copolymers prepared by the anionic ring‐opening polymerization of cyclotrisiloxanes. As the source of the vinyl‐containing segment, 1,3,5‐trimethyl‐1,3,5‐trivinylcyclotrisiloxane was used. The obtained polymers showed high block purity and a narrow molecular weight distribution. The postmodification was carried out with a two‐step procedure: in the first step, epoxide groups were introduced into the diblock copolymer, and in the second step, the ring opening of the latter functionalities was carried out. A variety of different nucleophiles were used for the ring‐opening reaction, and the influence of selected reaction parameters, such as the dilution and the use of monofunctional and difunctional nucleophiles, on the resulting polymers were investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3975–3985, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号