首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Some poly(vinylidene fluoride) (PVdF) microporous separators for lithium‐ion batteries, used in liquid organic electrolytes based on a mixture of carbonate solvents and lithium salt LiPF6, were characterized by the study of the swelling phenomena on dense PVdF membranes. We were interested in the evolution of the swelling ratios with respect to different parameters, such as the temperature, swelling solution composition, and salt concentration. To understand PVdF behavior in microporous membranes and, therefore, to have a means of predicting its behavior with different solvent mixtures, we correlated the swelling ratios in pure solvents and in solvent mixtures to the solvent–polymer interaction parameters and solvent–solvent interaction parameters. We attempted a parametric identification of swelling curves with a very simple Flory–Huggins model with relative success. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 532–543, 2004  相似文献   

2.
Microporous poly(vinylidene fluoride) (PVdF) separators for lithium-ion batteries, used in liquid organic electrolytes, have been characterized with respect to the swelling phenomena on dense PVdF membranes (obtained through hot pressing). In the first and second parts of this study, we have described the swelling equilibria and swelling kinetics of dense PVdF. Here the thermal properties of PVdF gels and their irreversible modifications induced by swelling are characterized. Particular attention is paid to crystallinity modifications, polymer plasticization, and membrane degradation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2308–2317, 2004  相似文献   

3.
Four quaternary alkyl ammonium salts were used in an organophilic procedure, performed on montmorillonite clay, and resulted in intercalation in dimethylformamide (DMF) or ethylene carbonate (EC)/propylene carbonate (PC) as a cosolvent between poly(vinylidene fluoride) (PVdF) and the organophilic clay. An examination using X‐ray diffraction revealed that PVdF entered galleries of montmorillonite clay, and it exhibited exfoliation and intercalation phenomena when it was analyzed with transmission electron microscopy. Gel PVdF nanocomposite electrolyte materials were successfully prepared by the addition of the appropriate percentages of DMF or PC/EC as a cosolvent, organophilic clay, and lithium perchlorate to PVdF. The maximum ionic conductivity was 1.03 × 10?2 S/cm, and the materials exhibited better film formation, solvent‐maintaining capability, and dimensional stability than electrolyte films without added organophilic clays. The results of cyclic voltammetry testing showed that the addition of the organophilic clays significantly enhanced the electrochemical stability of the polymer electrolyte system. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3873–3882, 2002  相似文献   

4.
A novel method is reported for controlling the structure of poly(vinylidene fluoride) (PVdF) composite proton conducting membranes. When proton conducting Nafion or zirconium phosphate sulfophenylenphosphonate (ZrPSPP) particles are dispersed in a mixed colloidal suspension with PVdF particles, the proton conducting particles selectively respond to an applied electric field. Under appropriate conditions, the proton conducting particles are induced to assemble into chains that rapidly grow to span the gap between electrodes as the electric field is applied. By removing the solvent and melting the PVdF phase while applying the electric field, composite membranes were formed that have field-induced structure. In comparison to randomly structured composites, the electric field-processed Nafion/PVdF or ZrPSPP/PVdF composite membranes showed improved proton conductivity, water sorption, selectivity for protons over methanol, and controlled surface area changes upon swelling with water. The transport and mechanical properties of the electric field-processed composite membranes suggest the potential for improved performance in direct methanol fuel cells.  相似文献   

5.
Salt‐containing membranes based on polymethacrylates having poly(ethylene carbonate‐co‐ethylene oxide) side chains, as well as their blends with poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP), have been studied. Self‐supportive ion conductive membranes were prepared by casting films of methacrylate functional poly(ethylene carbonate‐co‐ethylene oxide) macromonomers containing lithium bis(trifluorosulfonyl)imide (LiTFSI) salt, followed by irradiation with UV‐light to polymerize the methacrylate units in situ. Homogenous electrolyte membranes based on the polymerized macromonomers showed a conductivity of 6.3 × 10?6 S cm?1 at 20 °C. The preparation of polymer blends, by the addition of PVDF‐HFP to the electrolytes, was found to greatly improve the mechanical properties. However, the addition led to an increase of the glass transition temperature (Tg) of the ion conductive phase by ~5 °C. The conductivity of the blend membranes was thus lower in relation to the corresponding homogeneous polymer electrolytes, and 2.5 × 10?6 S cm?1 was recorded for a membrane containing 10 wt % PVDF‐HFP at 20 °C. Increasing the salt concentration in the blend membranes was found to increase the Tg of the ion conductive component and decrease the propensity for the crystallization of the PVDF‐HFP component. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 79–90, 2007  相似文献   

6.
The kinetics of the swelling of cross-linked poly(ethyl methacrylate) gels in 2-hexanone was studied at temperatures varying from 70.0 to 85.0 °C. The sorption curves exhibit the characteristic features of transport processes, apparently the Fickian diffusion of fast rates. The data were analyzed successfully by the contemporary model of Li and Tanaka, resulting in the cooperative diffusion coefficient, Dc, and the ratio of the shear modulus to the longitudinal osmotic modulus. It has been established empirically that the Dc is a composite function consisting of an Arrhenius expression and two simple power laws of the number-average molecular weight between cross-links and the equilibrium volume fraction of the gel. On the basis of the present findings, the quality of the swelling agent is discussed.  相似文献   

7.
Macroporous polyvinylidene fluoride (PVdF) membranes were prepared by a phase inversion method and evaluated as battery separators. Two totally different morphologies (cellular and finger-like) were obtained by coagulating PVdF solutions with two different solvents. The cellular membranes were formed immediately by precipitating the PVdF solution with a latent solvent (acetone) in water, while the finger-like membranes were precipitated from the PVdF solution with a true solvent (N-methyl-2-pyrrolidone). The incorporation of a silica filler decreased the ionic resistance of the PVdF membranes of both morphologies. However, the cellular membranes showed better mechanical properties and enabled higher ionic conductivities than the finger-like ones, especially when the silica loading was low. Compared with a conventional untreated polyolefin separator, the porous PVdF membranes showed good wettability by a liquid electrolyte. After being activated with a commercial LiPF6–ethylene carbonate–dimethyl carbonate electrolyte, the PVdF membranes were tested for their applications in lithium-ion batteries. Coin cells with these PVdF membranes exhibited stable cycling performance and good rate capability at room temperature. However, the cellular membranes are preferred over the finger-like ones because they offer higher mechanical performance, and can be processed into flat membranes more easily.  相似文献   

8.
High transparent and homogeneous poly(vinylidene fluoride) (PVdF)/silica hybrids were obtained by using an in‐situ interpenetrating polymer network (IPN) method. The simultaneous formation of PVdF gel resulting from the physical cross‐linking and silica gel from sol–gel process prevented the aggregation of PVdF in silica gel matrix. To form the physical cross‐linking between PVdF chains, the cosolvent system of dimethylformaide (DMF) and γ‐butyrolactone was used. The obtained PVdF/silica hybrids had an entangled combination of physical PVdF gel and silica gel, which was called a “complete‐ IPN” structure. The physical cross‐linking between PVdF chains in silica gel matrix was confirmed by differential scanning calorimetry (DSC) measurements. The miscibility between PVdF and silica phase was examined by scanning electron microscopy (SEM) and tapping mode atomic force microscopy (TM‐AFM) measurements. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3543–3550, 2005  相似文献   

9.
Non‐Fickian sorption kinetics of methanol vapor in a poly(methyl methacrylate) film of 8 μm, at 35 °C, are presented. The behavior of the system was studied in series of interval absorption runs. The relevant diffusion and viscous relaxation processes were studied by kinetic analysis of the sorption kinetic curves, using the relaxation‐dependent solubility model. The sorption isotherm concaves upward at high activities, typical to Florry–Huggins behavior, while it exhibits a convex‐upward curvature at low methanol vapor activities, indicating sorption in the excess free volume of the polymer matrix. Thermodynamic diffusivity presents a complex functional dependence on the concentration, while relaxation rate is found to be a function of concentration as well as of concentration interval. Relaxation rate becomes increasingly concentration‐dependent as the effective glass transition of the system is approached. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3173–3184, 2006  相似文献   

10.
The thickness‐dependent water vapor swelling of molecular layer‐by‐layer polyamide films is studied via specular X‐ray reflectivity. The maximum swelling ratio of these ultrathin films scale inversely with thickness but more importantly show a dual‐mode sorption behavior characterized by Langmuir‐like sorption at low relative humidity and network swelling at high relative humidity. The thickness‐dependent network parameters are extracted using a proposed model that builds on Painter‐Shenoy network swelling model while taking into account the glass‐like characteristic below a critical swelling ratio, which also scales inversely with thickness. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 412–417  相似文献   

11.
The blend-based electrolyte, polyethylene oxide (PEO)-poly(vinylidene fluoride) (PVdF)-NaSCN, was prepared and characterized by FT-IR, X-ray diffraction (XRD) and differential thermal analysis (DTA) measurements at room temperature, and the effect of PVdF content on solvation and ion association was discussed over the content of 5-95%. It is shown that PEO has much stronger ability of solvation to NaSCN than PVdF does, indicating that the polymeric donor number is more important than its dielectric constant in solvating effect of polymer. However, PVdF can keep its semicrystalline nature and form microporous structure in blend-based electrolytes. These characters make PVdF not only enhance the mechanical stability of the electrolyte thin films, but also transform PEO crystalline phase into fully amorphous phase. Although PVdF can effectively disrupt the crystalline complex P(EO)(3)NaSCN, it does not affect the component of triple aggregations. In addition, the effect of PVdF content on ion association is also discussed in PEO-NaSCN electrolytes.  相似文献   

12.
The membranes for gel polymer electrolyte (GPE) for lithium-ion batteries were prepared by electrospinning a blend of poly(vinylidene fluoride) (PVdF) with cellulose acetate (CA). The performances of the prepared membranes and the resulted GPEs were investigated, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), porosity, hydrophilicity, electrolyte uptake, mechanical property, thermal stability, AC impedance measurements, linear sweep voltammetry, and charge–discharge cycle tests. The effect of the ratio of CA to PVdF on the performance of the prepared membranes was considered. It is found that the GPE based on the blended polymer with CA:PVdF =2:8 (in weight) has an outstanding combination property-strength (11.1 MPa), electrolyte uptake (768.2 %), thermal stability (no shrinkage under 80 °C without tension), and ionic conductivity (2.61 × 10?3 S cm?1). The Li/GPE/LiCoO2 battery using this GPE exhibits superior cyclic stability and storage performance at room temperature. Its specific capacity reaches up to 204.15 mAh g?1, with embedded lithium capacity utilization rate of 74.94 %, which is higher than the other lithium-ion batteries with the same cathode material LiCoO2 (about 50 %).  相似文献   

13.
Poly(vinyl alcohol‐co‐vinyl acetate) was functionalized by methacrylic anhydride to introduce functional groups by a new process that consisted of modifying a polymer directly from a powder form in the solid state. To favor the diffusion of the reagents, a swelling agent composed by a mixture of ethylene carbonate and propylene carbonate was used. N‐methylimidazole was used as a basic catalyst of the esterification reaction, adjusting the reaction times. This work presents the process and the effects of the formulation on anhydride conversion. The side reactions were also determined; they all involved N‐methylimidazole. Decarboxylation reactions of the carbonates were characterized, that is, going from ethylene carbonate to ethylene glycol, which is able to react with two anhydride molecules by esterification reactions to, respectively, form 2‐hydroxyethyl 2‐methylpropenoate and ethyl 1,2‐bis(2‐methyl propenoate). The same side reactions are possible with propylene carbonate but are less reactive than the starting ethylene carbonate. Model anhydrides such as hexanoic and heptanoic anhydrides, less reactive than methacrylic anhydride, were used to characterize a new anhydride decarboxylation reaction. The homogeneity of the grafting is also discussed, especially its dependence on the polymer properties, the diffusion modes of the reagents (carbonate mixture and the anhydride), and the competition between the diffusional and chemical kinetics of methacrylic anhydride. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1618–1629, 2004  相似文献   

14.
The synthesis of fluorinated monomers bearing an ω‐trialkoxysilane function (4,5,5‐trifluoropent‐4‐ene‐1‐trimethoxysilane and 4,5,5‐trifluoropent‐4‐ene‐1‐triethoxysilane), their radical copolymerization with vinylidene fluoride (VDF), and the crosslinking of resulting copolymers are presented. The silicon‐containing fluoromonomers were prepared from a three step‐reaction from ClCF2CFClI, last step being the hydrosilylation of 1,1,2‐trifluoro‐1,4‐pentadiene with trialkoxysilane. The copolymerizations of these silicon‐containing fluoromonomers with VDF led to original PVDF bearing pendant trialkoxysilane functions. Their microstructures, characterized by NMR showed that VDF was the more incorporated. These latter ones were crosslinked in the presence of moisture at 200 °C leading to insoluble materials stable in solvents, oils, water, and to acids. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3896–3910, 2006  相似文献   

15.
Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) gel electrolytes comprising a combination of plasticizers, ethylene carbonate (EC) and propylene carbonate (PC) and lithium salt LiX have been prepared using the solution casting technique in an argon atmosphere. The prepared electrolytes were subjected to ionic conductivity, compatibility with lithium metal anode and thermogravimetric (TG)/differential thermal analysis (DTA). The membranes, which possess lithium salt, LiBF4 exhibited maximum conductivity and on contrary it undergoes severe passivation with lithium metal. All these membranes are found to be stable thermally about 70 °C.  相似文献   

16.
Ethylene/ethane sorption characteristics were determined for dry Pebax™ (poly(amide 12-block-tetramethylenoxide) copolymer)/AgBF4 membranes by using an electronic microbalance. The membranes containing 0.7 and 22 wt.% AgBF4 showed a dual-mode sorption isotherm. The ethane isotherms for all the membranes were of the Henry-type, which is the normal sorption for gases in rubbery polymers. The abnormal presence of Langmuir sorption sites only for ethylene in the rubbery copolymer, never reported sofar, is attributed to the silver-based specific complexation sites. The silver salt which dissolved in limited amounts in the rubbery copolymer had a much smaller Langmuir sorption capacity than the salt that crystallized in the copolymer. The sorption kinetics indicate that the crystallized salt did adsorb slowly ethylene according to a zeroth-order kinetics, but not ethane. The gas uptake kinetics resulting from a step of the pressure surrounding the copolymer exhibited one stage for ethane but two stages for ethylene. For the latter, there was first a fast Fickian sorption stage, then a drift of the zeroth-order sorption of ethylene on salt crystals, which contributes for a large part to the total uptake. The zeroth-order sorption suggests that the sorbed ethylene amount in the second-stage is independent of the crystal-surface coverage. The value of the Fickian diffusion coefficient calculated by fitting the kinetics with a solution of the second Fick’s law was 5 × 10−12 m2/s for both ethylene (the first stage) and ethane, and is typical for small organic compounds in a rubbery material.  相似文献   

17.
The gas‐transport properties of poly[2,6‐toluene‐2,2‐bis(3,4‐dicarboxylphenyl)hexafluoropropane diimide] (6FDA‐2,6‐DAT) have been investigated. The sorption behavior of dense 6FDA‐2,6‐DAT membranes is well described by the dual‐mode sorption model and has certain relationships with the critical temperatures of the penetrants. The solubility coefficient decreases with an increase in either the pressure or temperature. The temperature dependence of the diffusivity coefficient increases with an increase in the penetrant size, as the order of the activation energy for the diffusion jump is CH4 > N2 > O2 > CO2. Also, the average diffusion coefficient increases with increasing pressure for all the gases tested. As a combined contribution from sorption and diffusion, permeability decreases with increases in the pressure and the kinetic diameter of the penetrant molecules. Even up to 32.7 atm, no plasticization phenomenon can be observed on flat dense 6FDA‐2,6‐DAT membranes from their permeability–pressure curves. However, just as for other gases, the absolute value of the heat of sorption of CO2 decreases with increasing pressure at a low‐pressure range, but the trend changes when the feed pressure is greater than 10 atm. This implies that CO2‐induced plasticization may occur and reduce the positive enthalpy required to create a site into which a penetrant can be sorbed. Therefore, a better diagnosis of the inherent threshold pressure for the plasticization of a glassy polymer membrane may involve examining the absolute value of the heat of sorption as a function of pressure and identifying the turning point at which the gradient of the absolute value of the heat of sorption against pressure turns from a negative value to a positive one. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 354–364, 2004  相似文献   

18.
Atomistic packing models have been created, which help to better understand the experimentally observed swelling behavior of glassy polysulfone and poly (ether sulfone), under CO2 gas pressures up to 50 bar at 308 K. The experimental characterization includes the measurement of the time‐dependent volume dilation of the polymer samples after a pressure step and the determination of the corresponding gas concentrations by gravimetric gas‐sorption measurements. The models obtained by force‐field‐based molecular mechanics and molecular dynamics methods allow a detailed atomistic analysis of representative swelling states of polymer/gas systems, with respect to the dilation of the matrix. Also, changes of free volume distribution and backbone mobility are accessible. The behavior of gas molecules in unswollen and swollen polymer matrices is characterized in terms of sorption, diffusion, and plasticization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1874–1897, 2006  相似文献   

19.
The diffusion and transport of organic solvents through crosslinked nitrile rubber/poly(ethylene‐co‐vinyl acetate) (NBR/EVA) blends have been studied. The diffusion of cyclohexanone through these blends was studied with special reference to blend composition, crosslinking systems, fillers, filler loading, and temperature. At room temperature the mechanism of diffusion was found to be Fickian for cyclohexanone–NBR/EVA blend systems. However, a deviation from the Fickian mode of diffusion is observed at higher temperature. The transport coefficients, namely, intrinsic diffusion coefficient (D*), sorption coefficient (S), and permeation coefficient (P) increase with the increase in NBR content. The sorption data have been used to estimate the activation energies for permeation and diffusion. The van't Hoff relationship was used to determine the thermodynamic parameters. The affine and phantom models for chemical crosslinks were used to predict the nature of crosslinks. The experimental results were compared with the theoretical predictions. The influence of penetrants transport was studied using dichloromethane, chloroform, and carbon tetrachloride. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1815–1831, 1999  相似文献   

20.
The radical terpolymerization of 8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene with vinylidene fluoride (VDF) and perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride is presented. Changing the feed compositions of these three fluorinated comonomers enabled us to obtain different random‐type poly[vinylidene fluoride‐ter‐perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride‐ter‐8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene] terpolymers containing various sulfonyl fluoride and brominated side groups. Yields higher than 70% were reached in all cases. The hydrolysis of the sulfonyl fluoride group into the ? SO3Li function in the presence of lithium carbonate was quantitatively achieved without the content of VDF being affected, and so dehydrofluorination of the VDF base unit was avoided. These original terpolymers were then crosslinked via dangling bromine atoms in the presence of a peroxide/triallyl isocyanurate system, which produced films insoluble in organic solvents such as acetone and dimethylformamide (which totally dissolved uncured terpolymers). The acidification of ? SO3Li into the ? SO3H function enabled protonic membranes to be obtained. The thermal stabilities of the crosslinked materials were higher than those of the uncured terpolymers, and their electrochemical performances were investigated. According to the contents of the sulfonic acid side functions, the ion‐exchange capacities ranged from 0.6 to 1.5 mequiv of H+/g, whereas the water uptake and conductivities ranged from 5–26% (±11%) and from 0.5 to 6.0 mS/cm, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4566–4578, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号