首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Proton transport in H3PO4‐ and H2SO4‐blended polybenzimidazoles (PBIs) has been studied with both temperature‐ and pressure‐dependent dielectric spectroscopy. The influences of the acid concentration and temperature on the relative conductance and activation volume are discussed. An Arrhenius relation is used to model the temperature‐dependent conductivity at a constant acid content. The logarithm of the relative conductance for PBI blended with H3PO4 decreases linearly with increasing pressure. As the temperature increases, the activation volume becomes smaller for PBI blended with H3PO4. It is proposed that proton transport in acid‐blended PBI is mainly controlled by proton hopping and diffusion rather than a mechanism mediated by the segmental motions in the polymer. The conductivities of PBIs blended with H3PO4 and H2SO4 are compared. At a 1.45 molar acid doping concentration, the former has the higher conductivity. With water, the conductivity of H3PO4‐blended PBI increases significantly. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 663–669, 2002; DOI 10.1002/polb.10132  相似文献   

2.
《先进技术聚合物》2018,29(1):594-602
Phosphoric acid (PA)–doped polybenzimidazole (PBI) proton exchange membranes have received attention because of their good mechanical properties, moderate gas permeability, and superior proton conductivity under high temperature operation. Among PBI‐based film membranes, nanofibrous membranes withstand to higher strain because of strongly oriented polymer chains while exhibiting higher specific surface area with increased number of proton‐conducting sites. In this study, PBI electrospun nanofibers were produced and doped with PA to operate as high temperature proton exchange membrane, while changes in proton conductivity and morphologies were monitored. Proton conductive PBI nanofiber membranes by using the process parameters of 15 kV and 100 μL/h at 15 wt% PBI/dimethylacetamide polymer concentration were prepared by varying PA doping time as 24, 48, 72, and 96 hours. The morphological changes associated with PA doping addressed that acid doping significantly caused swelling and 2‐fold increase in mean fiber diameter. Tensile strength of the membranes is found to be increased by doping level, whereas the strain at break (15%) decreased because of the brittle nature of H‐bond network. 72 hour doped PBI membranes demonstrated highest proton conductivity whereas the decrease on conductivity for 96‐hour doped PBI membranes, which could be attributed to the morphological changes due to H‐bond network and acid leaking, was noted. Overall, the results suggested that of 72‐hour doped PBI membranes with proton conductivity of 123 mS/cm could be a potential candidate for proton exchange membrane fuel cell.  相似文献   

3.
A new anhydrous proton conducting material based on polyimide and phosphoric acid composite was prepared. The interaction between polyimide (PI) and phosphoric acid was investigated by FTIR. The results show that phosphoric acid interacts with polyimides mainly by hydrogen bonds rather than by protonation of PI at room temperature. Environmental scanning electron microscopy (ESEM) was employed to study the surface morphology of the membranes. The results show that the surface of PI-xH3PO4 membranes is very compact and homogeneous. Proton conductivity and methanol permeability of PI doped with phosphoric acid (PI-xH3PO4) were also studied. Proton conductivity of PI-xH3PO4 membranes increases with increasing concentration of phosphoric acid. Hydrogen bond seems to play an important role in the proton conductivity of this system. Effects of osmotic on the direct diffusion process of methanol in the membranes can be negligible due to the absence of micro-pore structure as already shown in ESEM results. Effects of methanol concentration and temperature on the methanol permeability of PI-xH3PO4 membranes were also discussed. Methanol permeability in PI-xH3PO4 membranes decreases with increasing methanol concentration, and increases with increasing temperature.  相似文献   

4.
A new class of proton‐conducting polymer was developed via the sol–gel process from amino‐containing organic–inorganic hybrids by the treatment of poly(allylamine) with 3‐glycidoxypropyltrimethoxysilane doped with ortho‐phosphoric acid. The polymer matrix contains many hydrophilic sites and consists of a double‐crosslinked framework of polysiloxane and amine/epoxide. Differential scanning calorimetry results suggest that hydrogen bonding or electrostatic forces are present between H3PO4 and the amine nitrogen, resulting in an increase in the glass‐transition temperature of the poly(allylamine) chain with an increasing P/N ratio. The 31P magic‐angle spinning NMR spectra indicate that three types of phosphate species are involved in the proton conduction, and the motional freedom of H3PO4 is increased with increasing P/N ratios. The conductivity above 80 °C does not drop off but increases instead. Under a dry atmosphere, a high conductivity of 10?3 S/cm at temperatures up to 130 °C has been achieved. The maximum activation energy obtained at P/N = 0.5 suggests that a transition of proton‐conducting behavior exits between Grotthus‐ and vehicle‐type mechanisms. The dependence of conductivity on relative humidity (RH) above 50% is smaller for H3PO4‐doped membranes compared with H3PO4‐free ones. These hybrid polymers have characteristics of low water content (23 wt %) and high conductivity (10?2 S/cm at 95% RH), making them promising candidates as electrolytes for fuel cells. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3359–3367, 2005  相似文献   

5.
5-Vinyltetrazole (VT)-based polymer is mainly produced by ‘click chemistry’ from polyacrylonitrile due to the unavailability of 5-vinyltetrazole monomer, which usually produces copolymers of VT and acrylonitrile rather than pure poly(5-vinyltetrazole) (PVT). In present work, VT was synthesized from 5-(2-chloroethyl)tetrazole via dehydrochlorination. A series of PVT with different molecular weight were synthesized by normal free radical polymerization. The chemical structures of VT and PVT were characterized by 1H NMR and FTIR. PVT without any doped acid exhibits certain proton conductivity at higher temperature and anhydrous state. The proton conductivity of PVT decreases at least 2 orders of magnitude after methylation of tetrazole. PVT and PVT/H3PO4 composite membranes are thermally stable up to 200 °C. The glass transition temperature (Tg) of PVT/xH3PO4 composite membranes is shifted from 90 °C for x = 0.5 to 55 °C for x = 1. The temperature dependence of DC conductivity for pure PVT exhibits a simple Arrhenius behavior in the temperature range of 90–160 °C, while PVT/xH3PO4 composite membranes with higher H3PO4 concentration can be fitted by Vogel–Tamman–Fulcher (VTF) equation. PVT/1.0H3PO4 exhibits an anhydrous proton conductivity of 3.05 × 10−3 at 110 °C. The transmission of the PVT/xH3PO4 composite membrane is above 85% in the wavelength of visible light and changes little with acid contents. Thus, PVT/xH3PO4 composite membranes have potential applications not only in intermediate temperature fuel cells but also in solid electrochromic device.  相似文献   

6.
An amorphous, organosoluble, fluorine‐containing polybenzimidazole (PBI) was synthesized from 3,3′‐diaminobenzidine and 2,2‐bis(4‐carboxyphenyl)hexafluoropropane. The polymer was soluble in N‐methylpyrrolidinone and dimethylacetamide and had an inherent viscosity of 2.5 dL/g measured in dimethylacetamide at a concentration of 0.5 g/dL. The 5% weight loss temperature of the polymer was 520 °C. Proton‐conducting PBI membranes were prepared via solution casting and doped with different amounts of phosphoric acid. In the methanol permeability measurement, the PBI membranes showed much better methanol barrier ability than a Nafion membrane. The proton conductivity of the acid‐doped PBI membranes increased with increasing temperatures and concentrations of phosphoric acid in the polymer. The PBI membranes showed higher proton conductivity than a Nafion 117 membrane at high temperatures. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4508–4513, 2006  相似文献   

7.
Phosphoric acid doped poly (2, 2′‐(m‐phenylene)‐5, 5′‐bibenzimidazole) (PBI) membranes were prepared by dissolving PBI powders in 85% phosphoric acid at 190–200°C and then promoting gelation of the PBI by cooling the solutions to ?18°C. The extent of acid doping of the PBI membranes was controlled by immersing the membrane in aqueous phosphoric acid solutions of different concentrations (acid de‐doping). The process of the acid de‐doping was faster than acid doping of membrane cast from N,N‐dimethylacetamide (DMAc). The de‐doping process caused shrinkage of the PBI membrane and thus an increase in the membrane strength due to the packing of PBI chains according to the X‐ray diffraction analysis. The tensile stress and proton conductivity of the obtained PBI membranes with different acid doping levels were measured. For a PBI (ηIV: 0.58 dL · g?1) membrane with an acid doping level of 7.0 (molar number of doped acid per mole repeat unit of PBI), the stress at break and proton conductivity at 120°C without humidification were 2.6 MPa and 5.1 × 10?2 S · cm?1, respectively. These results were comparable to those of the membranes cast from PBI solutions in DMAc. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Phosphonic acid functional polymers are currently of interest because of their high proton conductivity in humidified and anhydrous systems. In addition, heterocyclic compounds are used in anhydrous proton conducting polymer membranes. In that study, a new copolymer based on 1‐vinyl‐1,2,4‐triazole (VTri) and diisopropyl‐p‐vinylbenzyl phosphonate (VBP) was synthesized, and their thermal, chemical, and proton conducting properties were investigated. The copolymers were synthesized by free radical copolymerization of the corresponding monomers at several monomer feed ratios to obtain P(VTri‐co‐VBP) copolymers. The copolymer samples were then hydrolyzed to produce poly(vinyl triazole‐co‐vinyl phosphonic acid) copolymers. The composition of the copolymers was determined by elemental analysis. The copolymerization and hydrolysis reactions were verified by Fourier transform infrared spectroscopy and ion exchange capacity measurements. Thermogravimetry analysis indicates that the copolymers are thermally stable up to 300°C. In order to increase the proton conductivity, the copolymers were doped with H3PO4 at several stoichometric ratios. The proton conductivity increases with triazole and phosphoric acid content. In the absence of humidity, the copolymer electrolyte, P(VTri‐co‐VBPA)1:0.5 X = 2, showed a proton conductivity of 0.005 S/cm at 150°C. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Phosphoric acid doped polybenzimidazole (PBI) membranes have been covalently cross‐linked with dichloromethyl phosphinic acid (DCMP). FT‐IR measurements showed new bands originating from bonds between the hydrogen bearing nitrogen in the imidazole group of PBI and the CH2 group in DCMP. The produced cross‐linked membranes show increased mechanical strength, making it possible to achieve higher phosphoric acid doping levels and therefore higher proton conductivity. Oxidative stability is significantly improved and thermal stability is sufficient in a temperature range of up to 250°C, i.e. within the temperature range of operation of PBI‐based fuel cells. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
A comb-like copolymer consisting of a poly(vinylidene fluoride-co-chlorotrifluoroethylene) backbone and poly(hydroxy ethyl acrylate) side chains, i.e. P(VDF-co-CTFE)-g-PHEA, was synthesized through atom transfer radical polymerization (ATRP) using CTFE units as a macroinitiator. Successful synthesis and a microphase-separated structure of the copolymer were confirmed by proton nuclear magnetic resonance (1H NMR), FT-IR spectroscopy, and transmission electron microscopy (TEM). This comb-like polymer was crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via the esterification of the –OH groups of PHEA and the –COOH groups of IDA. Upon doping with phosphoric acid (H3PO4) to form imidazole–H3PO4 complexes, the proton conductivity of the membranes continuously increased with increasing H3PO4 content. A maximum proton conductivity of 0.015 S/cm was achieved at 120 °C under anhydrous conditions. In addition, these P(VDF-co-CTFE)-g-PHEA/IDA/H3PO4 membranes exhibited good mechanical properties (765 MPa of Young's modulus), and high thermal stability up to 250 °C, as determined by a universal testing machine (UTM) and thermal gravimetric analysis (TGA), respectively.  相似文献   

11.
The chemically covalent polyethylenimine–siloxane hybrids doped with various amounts of ortho‐phosphoric acid (H3PO4) were prepared and characterized by FTIR, DSC, TGA, and solid‐state NMR spectra. The protonic conduction behavior of these materials was also investigated by means of impedance measurements. These observations indicate that the hydrogen bonding and protonic interactions exist between the dopant H3PO4 and the hybrid host, resulting in an increase in T g of polyethylenimine segments. These hybrids are thermally stable up to 200 °C from TGA analysis. Conductivity studies show an Arrhenius behavior characteristic and the Grotthus‐like proton conduction, and a high conductivity of 10?2–10?3 S cm?1 at 110 °C in dry atmosphere for the hybrid membrane with H3PO4/EI of 0.5. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2135–2144, 2006  相似文献   

12.
The limited long‐term hydrolytic stability of rapidly emerging 3D‐extended framework materials (MOFs, COFs, MOPs, etc.) is still one of major barriers for their practical applications as new solid‐state electrolytes in fuel cells. To obtain hydrolytically stable materials, two H2PO4?‐exchanged 3D inorganic cationic extended frameworks (CEFs) were successfully prepared by a facile anion‐exchange method. Both anion‐exchanged CEFs (YbO(OH)P and NDTBP) show significantly enhanced proton conductivity when compared with the original materials (YbO(OH)Cl and NDTB) with an increase of up to four orders‐of‐magnitude, reaching 2.36×10?3 and 1.96×10?2 S cm?1 at 98 % RH and 85 °C for YbO(OH)P and NDTBP, respectively. These values are comparable to the most efficient proton‐conducting MOFs. In addition, these two anion‐exchanged materials are stable in boiling water, which originates from the strong electrostatic interaction between the H2PO4? anion and the cationic host framework, showing a clear advance over all the acid‐impregnated materials (H2SO4@MIL‐101, H3PO4@MIL‐101, and H3PO4@Tp‐Azo) as practical solid‐state fuel‐cell electrolytes. This work offers a new general and efficient approach to functionalize 3D‐extended frameworks through an anion‐exchange process and achieves water‐stability with ultra‐high proton conductivity above 10?2 S cm?1.  相似文献   

13.
Developing new materials for the fabrication of proton exchange membranes (PEMs) for fuel cells is of great significance. Herein, a series of highly crystalline, porous, and stable new covalent organic frameworks (COFs) have been developed by a stepwise synthesis strategy. The synthesized COFs exhibit high hydrophilicity and excellent stability in strong acid or base (e.g., 12 m NaOH or HCl) and boiling water. These features make them ideal platforms for proton conduction applications. Upon loading with H3PO4, the COFs (H3PO4@COFs) realize an ultrahigh proton conductivity of 1.13×10?1 S cm?1, the highest among all COF materials, and maintain high proton conductivity across a wide relative humidity (40–100 %) and temperature range (20–80 °C). Furthermore, membrane electrode assemblies were fabricated using H3PO4@COFs as the solid electrolyte membrane for proton exchange resulting in a maximum power density of 81 mW cm?2 and a maximum current density of 456 mA cm?2, which exceeds all previously reported COF materials.  相似文献   

14.
Polybenzimidazoles (PBIs) are among the polymers of choice to prepare membranes for high temperature polymer fuel cells. Poly-2,2'(2,6-pyridine)-5,5'-bibenzimidazole (PBI5N), doped with H(3)PO(4), and acid-doped PBI5N containing 10 wt% of imidazole-functionalized silica membranes were studied with thermogravimetric analysis, differential scanning calorimetry, dynamic-mechanical analysis, infrared spectroscopy, and broadband electric spectroscopy to examine the structure-property relationships. Key results show that: (1) doped PBI5N membranes show thermal decomposition starting at 120 °C, while pristine PBI5N is stable up to 300 °C; (2) the presence of filler increases the acid uptake and decreases the crystallinity of PBI5N; (3) the addition of phosphoric acid reduces the mechanical properties of the membrane, while the addition of filler has the opposite effect; (4) acid-doped membranes have conductivity values on the order of 10(-2)-10(-3) S cm(-1); and (5) membranes exhibit a Vogel-Tamman-Fulcher (VTF) type proton conduction mechanism, where proton hopping is coupled with the segmental motion of the polymer chain. Infrared spectroscopy combined with DFT quantum mechanical calculations was used to assign the experimental spectrum of PBI5N.  相似文献   

15.
The melting behavior of a coordination polymer (CP) crystal was utilized to achieve enhanced and optically switchable proton conductivity in the solid state. The strong acid molecules (triflic acid) were doped in one‐dimensional (1D) CP, [Zn(HPO4)(H2PO4)2](ImH2)2 (ImH2=monoprotonated imidazole) in the melt state, and overall enhancement in the proton conductivity was obtained. The enhanced proton conductivity is assigned to increased number of mobile protons and defects created by acid doping. Optical control over proton conductivity in the CP is achieved by doping of the photo acid molecule pyranine into the melted CP. The pyranine reversibly generates the mobile acidic protons and local defects in the glassy state of CP resulting in the bulk switchable conductivity mediated by light irradiation. Utilization of CP crystal in liquid state enables to be a novel route to incorporate functional molecules and defects, and it provides a tool to control the bulk properties of the CP material.  相似文献   

16.
A new anhydrous proton conducting membrane for solid-state electrochromic device (ECD) based on poly(vinyl alcohol) (PVA), imidazole (Imi), and ammonium dihydrogen phosphate (NH4H2PO4) was prepared. The structure of PVA/Imi/NH4H2PO4 composite membrane was studied by X-ray diffraction and differential scanning calorimetry (DSC). The transmittance of the membrane always decreases with increasing content of the imidazolium. Compared with the PVA/NH4H2PO4 membrane, the addition of proper amount of Imi can enhance the proton conductivity to a certain extent. At low PVA content, equal molar ratio of Imi and NH4H2PO4 is favorable for high proton conductivity, while higher molar ratio of Imi and NH4H2PO4 is beneficial at high PVA content.  相似文献   

17.
Proton conducting polymer membranes have become crucial due their applications in fuel cells as source of clean energy. In this work, we synthesized poly(glycidyl methacrylate) (PGMA) by conventional free radical polymerization of GMA using azobisisobutyronitrile (AIBN) as initiator. PGMA was modified with 5-aminotetrazole by ring opening of the epoxide group. The composition of the polymer was studied by elemental analysis (EA) and the structures were characterized by FT-IR and solid 13C NMR spectra. Thermogravimetry analysis (TG) and differential scanning calorimetry (DSC) were employed to examine the thermal stability and homogeneity of the materials, respectively. Polymers were doped with H3PO4 at several stoichometric ratios. The effect of doping on the proton conductivity was studied via impedance spectroscopy. Maximum proton conductivity of acid-doped PGMA-aminotetrazole was found to be 0.01 S/cm at 150 °C in the anhydrous state.  相似文献   

18.
Phosphate-based silver–bipyridine (Ag-bpy) 1D coordination polymer {[{Ag(4,4′-bpy)}2{Ag(4,4′-bpy)(H2PO4)}] ⋅ 2 H2PO4 ⋅ H3PO4 ⋅ 5 H2O}n ( 1 ) with free phosphoric acid (H3PO4), its conjugate base (H2PO4) and water molecules in its lattice was synthesized by room-temperature crystallization and the hydrothermal method. An XRD study showed that coordinated H2PO4, lattice H2PO4 anions, free H3PO4 and lattice water molecules are interconnected by H-bonding interactions, forming an infinitely extended 2D H-bonded network that facilitates proton transfer. This material exhibits a high proton conductivity of 3.3×10−3 S cm−1 at 80 °C and 95 % relative humidity (RH). Furthermore, synthesis of this material from commercially available starting materials in water can be easily scaled up, and it is highly stable under extreme conditions of conductivity measurements. This report inaugurates the usage and design principle of proton-conducting frameworks based on crystallized phosphoric acid and phosphate.  相似文献   

19.
Polybenzimidazole (PBI)/imidazole (Im) hybrid membranes were prepared from an organosoluble, fluorine-containing PBI with Im. The thermal decomposition of the PBI/Im hybrid membranes occurred at about 160 °C. The conductivities of the acid doped PBI/Im hybrid membranes increased with both the temperature and the Im content. The conductivity of acid doped PBI-40Im (molar ratio of Im/PBI = 40) reached 3.1 × 10−3 (S/cm) at 160 °C. The proton conductivities of PBI/Im hybrid membranes were over 2 × 10−3 (S/cm) at 90 °C and 90% relative humidity. The addition of Im could reduce the mechanical properties and methanol barrier ability of the PBI membranes.  相似文献   

20.
We report the preparation of phosphoric acid doped poly(2,5-benzimidazole) (ABPBI) membranes for PEMFC by simultaneously doping and casting from a poly(2,5-benzimidazole)/phosphoric acid/methanesulfonic acid (MSA) solution. The evaporation of MSA yields a very homogeneous membrane having a better controlled composition, avoiding the use of solvent-intensive procedures. Membranes have been prepared with contents of up to 3.0H3PO4 molecules per ABPBI repeating unit. These membranes achieve a maximum conductivity of 1.5 × 10−2 S cm−1 at temperatures as high as 180 °C in dry conditions. These ABPBI membranes are more conveniently prepared than those conventionally formed and doped in separate steps while featuring comparable conductivities (ABPBI × 2.7H3PO4 prepared by the soaking method showed a conductivity of 2.5 × 10−2 S cm−1 at 180 °C in dry conditions).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号