共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitroxide-mediated living radical polymerizations of styrene were run in miniemulsion. Using a modified miniemulsion process that does not require the use of a volatile costabilizer, near complete conversions could be achieved in 2-3 hours while preserving narrow molecular weight distributions and a high degree of chain livingness. Increased rates and final conversions were achieved by semi-batch addition of the nitroxide scavenger ascorbic acid. 相似文献
2.
3.
Michael F. Cunningham David C. T. Ng Sarah G. Milton Barkev Keoshkerian 《Journal of polymer science. Part A, Polymer chemistry》2006,44(1):232-242
The 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO)‐mediated stable free radical polymerization of styrene in miniemulsion at 100 °C is demonstrated. Although this temperature is 20–35 °C lower than typical temperatures used for TEMPO‐mediated polymerizations, reasonable reaction rates were achieved by the addition of ascorbic acid or a free radical initiator. More importantly, the living character of the chains was preserved; the degree of polymer “livingness” was comparable to polymerizations conducted at 135 °C. Polydispersities were broader than that observed in well‐controlled systems, ranging from ~1.4–1.6, and consistent with expectations for systems having a low activation rate. The results are significant for two reasons. They will facilitate TEMPO‐mediated minemulsion polymerizations in nonpressurized (or minimally pressurized) reactors, and they reveal the potential to expand the traditional temperature range of TEMPO and possibly other nitroxides in bulk, solution, and miniemulsion. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 232–242, 2006 相似文献
4.
Yingwu Luo F. Joseph Schork 《Journal of polymer science. Part A, Polymer chemistry》2002,40(19):3200-3211
Butyl acrylate conventional emulsion (macroemulsion) and miniemulsion polymerizations were carried out with an oil‐soluble initiator (azobisisobutyronitrile) in the presence or absence of an aqueous‐phase radical scavenger. For macroemulsion polymerization, in the presence of an aqueous‐phase radical scavenger, no particle nucleation occurred, whereas in the absence of an aqueous‐phase radical scavenger, particle nucleation proceeded as expected. For miniemulsion polymerization, the rate of polymerization was much higher in the absence of an aqueous‐phase radical scavenger than in its presence. Furthermore, in the absence of an aqueous‐phase radical scavenger, the miniemulsion polymerization rate increased with reduced droplet size, whereas in the presence of an aqueous‐phase radical scavenger, the trend was reversed. It is concluded that (1) for macroemulsion polymerization, the contribution from free radicals originating in the aqueous‐phase is predominant in the micellar nucleation of particles; (2) free radicals originating in the particle phase contribute to the rate of polymerization and the contribution increases with an increase in the particle size; and (3) for polymer particles with diameters of up to approximately 100 nm, polymerization is initiated from free radicals originating in the aqueous phase. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3200–3211, 2002 相似文献
5.
Michael F. Cunningham Karine Tortosa Marcus Lin Barkev Keoshkerian Michael K. Georges 《Journal of polymer science. Part A, Polymer chemistry》2002,40(16):2828-2841
The rate‐accelerating effects of camphorsulfonic acid (CSA) on nitroxide‐mediated styrene miniemulsion polymerization were studied. Polymerizations were initiated with benzoyl peroxide (BPO) as an initiator and mediated with either 2,2,6,6‐tetramethylpiperidinyloxy (TEMPO) or 4‐hydroxy‐2,2,6,6‐tetramethylpiperidinyloxy (OH‐TEMPO). Although CSA has been used to accelerate the rate in bulk nitroxide‐mediated polymerizations, it has not been well studied in emulsion/miniemulsion. With dispersed systems, the effectiveness of CSA is likely to be affected by partitioning between the aqueous and organic phases. In styrene miniemulsion experiments performed over a range of conditions, the effect of adding CSA varied from negligible to significantly increasing the final conversion and molecular weight, depending on the nitroxide:BPO ratio. At a ratio of nitroxide:BPO = 1.7, the effect of CSA addition is small, whereas the final conversion and molecular weight are dramatically enhanced by CSA addition when the nitroxide:BPO ratio is 3.6. CSA is most effective in enhancing the rate and molecular weight when the initial free‐nitroxide concentration is higher. The magnitude of the rate and molecular weight enhancement was similar for TEMPO and OH‐TEMPO despite their differences in water solubility. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2828–2841, 2002 相似文献
6.
Lei Yang Yingwu Luo Bogeng Li 《Journal of polymer science. Part A, Polymer chemistry》2006,44(7):2293-2306
The surfactant coverage of minidroplets was tuned by postaddition of more surfactants after preparation of the miniemulsion of styrene. The influence of surfactant coverage on reversible addition‐fragmentation chain transfer (RAFT) miniemulsion polymerization of styrene was investigated. When the surfactant (sodium dodecyl sulfate; SDS) coverage was as low as 40%, two kinds of particles, denoted as polymer and oligomer particles, were formed in the early stage of the polymerization. Polymer chains within two kinds of particles grew in a parallel way during the rest period of the polymerization. The oligomer particles contributed less than 10% to the final monomer conversion but consumed over one in third the original RAFT agent molecules. Oligomer particles were larger in size but much lower in molecular weight. Both the particle size and molecular weight distributions were bimodal. With increase of SDS coverage, the formation of oligomer particles was suppressed. As a result, the nucleation efficiency of the minidroplets was greatly enhanced and the molecular weight and particle size distributions were dramatically narrowed. The formation of the oligomer particles was ascribed to the superswelling occurring in the beginning stage of the polymerization. The experimental observations are in excellent accord to the superswelling theory. Postaddition of surfactant presents a novel method to narrow particle size and molecular weight distributions in RAFT miniemulsion polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2293–2306, 2006 相似文献
7.
Ying‐Da Luo I‐Chen Chou Wen‐Yen Chiu Chia‐Fen Lee 《Journal of polymer science. Part A, Polymer chemistry》2009,47(17):4435-4445
In this research, poly(methyl methacrylate)‐b‐poly(butyl acrylate) (PMMA‐b‐PBA) block copolymers were prepared by 1,1‐diphenylethene (DPE) controlled radical polymerization in homogeneous and miniemulsion systems. First, monomer methyl methacrylate (MMA), initiator 2,2′‐azobisisobutyronitrile (AIBN) and a control agent DPE were bulk polymerized to form the DPE‐containing PMMA macroinitiator. Then the DPE‐containing PMMA was heated in the presence of a second monomer BA, the block copolymer was synthesized successfully. The effects of solvent and polymerization methods (homogeneous polymerization or miniemulsion polymerization) on the reaction rate, controlled living character, molecular weight (Mn) and molecular weight distribution (PDI) of polymers throughout the polymerization were studied and discussed. The results showed that, increasing the amounts of solvent reduced the reaction rate and viscosity of the polymerization system. It allowed more activation–deactivation cycles to occur at a given conversion thus better controlled living character and narrower molecular weight distribution of polymers were demonstrated throughout the polymerization. Furthermore, the polymerization carried out in miniemulsion system exhibited higher reaction rate and better controlled living character than those in homogeneous system. It was attributed to the compartmentalization of growing radicals and the enhanced deactivation reaction of DPE controlled radical polymerization in miniemulsified droplets. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4435–4445, 2009 相似文献
8.
Per B. Zetterlund 《Macromolecular theory and simulations》2010,19(1):11-23
Compartmentalization and nitroxide partitioning in NMP in dispersed systems have been investigated by modeling and simulations. Compartmentalization comprises the segregation effect on termination and the confined space effect on deactivation. Under certain conditions, it is possible to obtain an improvement in both control and livingness. The particle size threshold for compartmentalization, decreases with any system change that leads to a decrease in the number of propagating radicals and/or nitroxides per particle, and vice versa. There is direct competition between the confined space effect on deactivation and nitroxide exit–the more water‐soluble the nitroxide, the weaker the confined space effect. Nitroxide partitioning leads to an increase in polymerization rate and loss in control/livingness.
9.
Krzysztof Matyjaszewski Jian Qiu Nicolay V. Tsarevsky Bernadette Charleux 《Journal of polymer science. Part A, Polymer chemistry》2000,38(Z1):4724-4734
Ultrasonication was applied in combination with a hydrophobe for the copper‐mediated atom transfer radical polymerization of n‐butyl methacrylate in an aqueous dispersed system. A controlled polymerization was successfully achieved, as demonstrated by a linear correlation between the molecular weights and the monomer conversion. The polydispersities of the polymers were small (weight‐average molecular weight/number‐average molecular weight < 1.5). The influence of several factors, including ultrasonication, the amount of the surfactant, and the nature of the initiator, on the polymerization kinetics, molecular weight, and particle size was studied. The polymerization rate and molecular weights were independent of the number of particles and only depended on the atom transfer equilibrium. The final particle size, however, was a function of all the parameters. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4724–4734, 2000 相似文献
10.
Nermeen Nabih Katharina Landfester Andreas Taden 《Journal of polymer science. Part A, Polymer chemistry》2011,49(23):5019-5029
A universal method for the synthesis of water‐based inorganic–polymer hybrid particles was developed in which no organic solvent is required. To demonstrate the versatility of this process, zinc phosphate, calcium carbonate, and barium sulfate were chosen as different pigment examples which additionally can be utilized for functional coating applications. Furthermore, a complex polymeric composition based on epoxy–acrylic–styrene was chosen to illustrate the versatility from a soft matter point of view. The overall synthesis process was carried out by coemulsification of two inverse miniemulsions, containing two precursors, surrounded with a polymerizable continuous phase. This was then transferred to a direct miniemulsion by addition to a surfactant solution and subsequent homogenization followed by radical polymerization of the vinylic monomers. To our knowledge, this is the first work where a polymerizable continuous phase has been used in an inverse miniemulsion formation followed by transfer to a direct miniemulsion, followed by polymerization, so that the result is a water‐based dispersion. The resultant dispersion was characterized by dynamic light scattering; the particles were investigated via transmission electron microscopy with in situ determination of crystallinity using electron diffraction. Elemental analysis was also performed for the particles and the polymerized miniemulsions using X‐ray fluorescence and inductively coupled plasma‐optical emission spectroscopy, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
11.
C. M. Miller P. J. Blythe E. D. Sudol C. A. Silebi M. S. El-Aasser 《Journal of polymer science. Part A, Polymer chemistry》1994,32(12):2365-2376
Solution of polystyrene in styrene were dispersed in an aqueous gel phase comprising sodium lauryl sulfate, cetyl alcohol, and water using an emulsification process known to produce monomer droplet sizes inthe submicron size range (referred to as miniemulsion droplets). The shelf-life stabilities of these miniemulsions were studied to determine their relative droplet sizes, and the emulsions were concommitantly polymerized in an isothermal batch reaction calorimeter. The polymerization kinetics and final particle sizes produced were compared with miniemulsion and conventional emulsion polymerizations prepared using equivalent recipes without the addition of polystyrene. The results indicate that polymerization of miniemulsions prepared from polymer solutions produce significantly different kinetics than both miniemulsion and conventional emulsion polymerizations. In general, a small amount of polymer greatly increases the rate of polymerization and the final number of particles produced in the polymerization to the extent where even conventional polymerizations carried out above the critical micelle concentration of the surfactant polymerize more slowly. The results are explained by considering the system to be comprised of small, stable pre-formed monomer-swollen polymer particles which are able to efficiently capture aqueous phase radicals. This enables the system to produce a large final number of particles, similar to the initial number of pre-formed polymer particles, as opposed to miniemulsions and micelles in which only a relatively small fraction of the initial number of species (droplets or micelles) become polymer particles. © 1994 John Wiley & Sons, Inc. 相似文献
12.
13.
Keisuke Chino Takeshi Endo 《Journal of polymer science. Part A, Polymer chemistry》2000,38(18):3434-3439
The radical polymerization behavior of 1‐cyano‐o‐quinodimethane generated by thermal isomerization of 1‐cyanobenzocyclobutene in the presence of 2,2,6,6‐tetramethylpiperidine‐N‐oxide (TEMPO) and the block copolymerization of the obtained polymer with styrene are described. The radical polymerization of 1‐cyanobenzocyclobutene was carried out in a sealed tube at temperatures ranging from 100 to 150 °C for 24 h in the presence of di‐tert‐butyl peroxide (DTBP) as a radical initiator and two equivalents of TEMPO as a trapping agent of the propagation end radical to obtain hexane‐insoluble polymer above 130 °C. Polymerization at 150 °C with 5 mol % of DTBP in the presence of TEMPO resulted in the polymer having a number‐average molecular weight (Mn ) of 2900 in 63% yield. The structure of the obtained polymer was confirmed as the ring‐opened polymer having a TEMPO unit at the terminal end by 1H NMR, 13C NMR, and IR analyses. Then, block copolymerization of the obtained polymer with styrene was carried out at 140 °C for 72 h to give the corresponding block copolymer in 82% yield, in which the unimodal GPC curve was shifted to a higher molecular weight region. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3434–3439, 2000 相似文献
14.
The influence of the initial macroinitiator concentration ([PT]0) on compartmentalization effects (segregation effects and confined space effects) in 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy (TEMPO)‐mediated radical polymerization of styrene in a dispersed system at 125 °C has been investigated by simulations employing modified Smith‐Ewart equations. The modeling approach accounts for compartmentalization of both propagating radicals and nitroxide, as well as the generation of radicals by thermal initiation of styrene. The manifestation of compartmentalization effects occurs at significantly greater particle diameters (d) for low [PT]0; at [PT]0 = 0.002 M , the polymerization rate, control and livingness are affected by compartmentalization for d < 120 nm, whereas the system behaves as in the corresponding bulk system for d > 45 nm at [PT]0 = 0.2 M . The results are discussed with regards to the specific effects of compartmentalization on deactivation and bimolecular termination.
15.
Marcus Lin James C. C. Hsu Michael F. Cunningham 《Journal of polymer science. Part A, Polymer chemistry》2006,44(20):5974-5986
In studying 2,2,6,6‐tetramethy‐1‐piperidinyloxy (TEMPO)‐mediated styrene miniemulsions, we have observed that the surfactant sodium dodecylbenzenesulfonate (SDBS) not only provides colloidal stability but also influences the rate of polymerization. Increasing the SDBS concentration results in higher polymerization rates, although the molecular weight distribution and particle size distribution are not significantly impacted. We have also examined another common sulfonate surfactant, DOWFAX 8390. In contrast to SDBS, DOWFAX 8390 does not affect the polymerization rate. Furthermore, DOWFAX‐stabilized polymerizations are slower than SDBS‐stabilized polymerizations. TEMPO‐mediated bulk styrene polymerizations are also accelerated significantly in the presence of SDBS. Although the mechanism for the rate acceleration is unknown, the experimental evidence suggests that SDBS is participating in the generation of radicals capable of propagating, thereby reducing the TEMPO concentration within the particles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5974–5986, 2006 相似文献
16.
Summary: Simulations based on the kinetics and mechanism of nitroxide‐mediated free radical polymerization (NMP) have been carried out in order to understand the hitherto largely unexplained effects (or lack thereof) of nitroxide partitioning in aqueous miniemulsion NMP. The focus has been on the miniemulsion NMP of styrene mediated by TEMPO and 4‐hydroxy‐TEMPO, two nitroxides with very similar activation‐deactivation equilibria, but very different organic phase‐aqueous phase partition coefficients. The general conclusion is that the organic phase propagating radical and nitroxide concentrations are unaffected by the partition coefficient in the stationary state, but the rate of polymerization and the extent of bimolecular termination increase with increasing nitroxide water solubility in the pre‐stationary state region. Specific NMP systems are, therefore, affected differently by nitroxide partitioning depending on whether polymerization predominantly occurs in the stationary state or not, which in turn is governed mainly by the activation‐deactivation equilibrium constant and the rate of thermal initiation.
17.
Chorng‐Shyan Chern Jih‐Cheang Sheu 《Journal of polymer science. Part A, Polymer chemistry》2000,38(17):3188-3199
The effects of 2‐hydroxyalkyl methacrylates (HEMA and HPMA) on the styrene miniemulsion polymerizations stabilized by SDS/lauryl methacrylate (LMA) or SDS/stearyl methacrylate (SMA) were investigated. A mixed mode of particle nucleation (monomer droplet nucleation and homogeneous nucleation) is operative during polymerization. Homogeneous nucleation plays a crucial role in the polymerizations stabilized by SDS/LMA, whereas monomer droplet nucleation becomes more important in the polymerizations stabilized by SDS/SMA. The polymerization kinetics is insensitive to the type of 2‐hydroxyalkyl methacrylates, but the difference in the relative importance of monomer droplet nucleation and homogeneous nucleation is detected. Incorporation of 1‐pentanol (C5OH) into the reaction mixture also shows a significant influence on the polymerizations stabilized by SDS/LMA or SDS/SMA. This is attributed to the formation of a close‐packed structure of SDS and C5OH on the droplet surface, which acts as a barrier to the incoming oligomeric radicals. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3188–3199, 2000 相似文献
18.
Elijah Bultz Makoto Ouchi Mitsuo Sawamoto Michael F. Cunningham 《Journal of polymer science. Part A, Polymer chemistry》2019,57(3):305-312
This work reports the use of cocatalysts in addition to “smart” ruthenium catalysts for Ru‐mediated reversible deactivation radical polymerization (RDRP) in miniemulsion, allowing for the synthesis of final products with significantly reduced residual metal. Using amine cocatalysts in miniemulsion allows for high conversions (> 90%) in under 10 h. Two forms of ferrocene cocatalysts are also used, including “smart” thermoresponsive PEGylated ferrocene derivatives (FcPEG) and ferrocene containing surfactants (FcTMA). Using “smart” thermoresponsive cocatalyst at low concentrations, rate enhancements in BMA and BzMA polymerizations are observed, with good catalyst removability. Using the FcTMA cocatalyst surfactant, increasing monomer hydrophobicity is shown to increase the polymerization rate and initiator efficiency. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 305–312 相似文献
19.
《先进技术聚合物》2018,29(3):1094-1106
The introduction of non‐modified kraft LignoBoost® lignin (KL) to produce polymer hybrid latex has received much attention in recent years because it is derived from renewable resources. The focus of this work is to develop a polymer hybrid latex by emulsion and miniemulsion copolymerization of styrene with n‐butyl acrylate and methacrylic acid in the presence of different concentrations of KL furnished by the pulp and paper industry. The study intends to substitute a styrene in the system to understand the effect of non‐modified KL on the properties not only of the latexes, but also on the copolymers themselves. Each polymerization was carried out by shot‐process of tertbutyl hydroperoxide and sodium formaldehyde sulfoxylate as the redox system. The polymer latexes were characterized in relation to overall conversion, particle diameter, particle morphology, coagulum formation, surface tension, zeta potential, and atomic force microscopy. The polymers were evaluated through gel permeation chromatography, water absorption, and thermal properties. The results show that the addition of non‐modified KL results in inhibition of the polymerization and that KL acts as a colloid stabilizer. Small particles were generated in the initial stages of the polymerizations. The presence of the KL altered the color of the latexes; the increase in KL concentration resulted in increase in the absorption of water of the polymer films; the increase in KL concentration resulted in decrease of the molar mass of the copolymers. 相似文献
20.
Md. Nur Alam Per B. Zetterlund Masayoshi Okubo 《Journal of polymer science. Part A, Polymer chemistry》2007,45(21):4995-5004
Bimolecular termination in nitroxide‐mediated radical polymerization in miniemulsion has been investigated through the heating of a polystyrene–2,2,6,6‐tetramethylpiperidinyl‐1‐oxy macroinitiator and its 4‐hydroxy‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy analogue in an aqueous toluene dispersion with sodium dodecyl benzenesulfonate as a surfactant at 125 °C. The level of bimolecular termination by combination, evaluated from the high‐molecular‐weight shoulder, was higher in miniemulsion than in solution and increased with decreasing particle size. Quantitative analysis revealed that these results cannot be rationalized solely by nitroxide partitioning to the aqueous phase. The results are explained by an interface effect, by which nitroxide is adsorbed or located at the aqueous–organic interface. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4995–5004, 2007 相似文献