首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The improvement of oxygen‐barrier properties of glassy polyesters by orientation was examined. Poly(ethylene terephthalate) (PET), poly(ethylene naphthalate), and a copolymer based on PET in which 55 mol % of the terephthalate was replaced with bibenzoate (PET‐BB55) were oriented by constrained uniaxial stretching. In a fairly narrow window of stretching conditions near the glass‐transition temperature, it was possible to achieve uniform extension of the polyesters without crystallization or stress whitening. The processes of orientation and densification correlated with the conformational transformation of glycol linkages from gauche to trans. Oxygen permeability, diffusivity, and solubility decreased with the amount of orientation. A linear relationship between the oxygen solubility and polymer specific volume suggested that the cold‐drawn polyester could be regarded as a one‐phase densified glass. This allowed an analysis of oxygen solubility in accordance with free‐volume concepts of gas permeability in glassy polymers. Orientation was seen as the process of decreasing the amount of excess‐hole free volume and bringing the nonequilibrium polymer glass closer to the equilibrium (zero‐solubility) condition. Cold drawing most effectively reduced the free volume of PET‐BB55. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 862–877, 2002  相似文献   

2.
The effect of uniaxial orientation on the free‐volume and oxygen‐transport properties of a propylene copolymer with 4.5 wt % ethylene was examined. The free‐volume hole size and hole density were measured with positron annihilation lifetime spectroscopy. Subsequently, the free‐volume characteristics were correlated with the oxygen‐transport properties. Orientation had only a small effect on the total amount of free volume: a small increase in the hole density was offset by a small decrease in the hole size. As a result, the oxygen solubility and amorphous‐phase density were unchanged by orientation. However, a pronounced decrease in the oxygen diffusivity when the draw ratio exceeded 6 indicated a change in the dynamic free volume. This was attributed to an increasing number of taut tie chains, which retarded oxygen diffusion. The reduced amorphous chain mobility was also manifest in the increased glass‐transition temperature, decreased bulk thermal expansivity, and decreased expansivity of free‐volume holes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1230–1243, 2005  相似文献   

3.
This study examined the oxygen‐transport properties of poly(ethylene terephthalate‐co‐bibenzoate) (PETBB55) crystallized from the melt (melt crystallization) or quenched to glass and subsequently isothermally crystallized by heating above the glass‐transition temperature (cold crystallization). The gauche–trans conformation of the glycol linkage was determined by infrared analysis, and the crystalline morphology was examined by atomic force microscopy. Oxygen solubility decreased linearly with volume fraction crystallinity. For melt‐crystallized PETBB55, extrapolation to zero solubility corresponded to an impermeable crystal with 100% trans glycol conformations, a density of 1.396 g cm?3, and a heat of melting of 83 J g?1. From the melt, PETBB55 crystallized as space‐filling spherulites with loosely organized lamellae and pronounced secondary crystallization. The morphological observations provided a structural model for permeability consisting of impermeable platelets randomly dispersed in a permeable matrix. In contrast, cold‐crystallized PETBB55 retained the granular texture of the quenched polymer despite the high level of crystallinity, as measured by the density and heat of melting. Oxygen solubility decreased linearly with volume fraction crystallinity, but zero solubility corresponded to an impermeable defective crystal with a trans fraction of 0.83 and a density of 1.381 g cm?3. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2489–2503, 2002  相似文献   

4.
The lamellar‐level morphology of an extruded poly(ethylene terephthalate) (PET)/poly(ethylene‐2,6‐naphthalate) (PEN) blend was investigated with small‐angle X‐ray scattering (SAXS). Measurements were made as a function of the annealing time in the melt and the crystallization temperature. The characteristic morphological parameters at the lamellar level were determined by correlation function analysis of the SAXS data. At a low crystallization temperature of 120 °C, the increased amorphous layer thickness was identified in the blend, indicating that some PEN was incorporated into the interlamellar regions of PET during crystallization. The blend also showed a larger lamellar thickness than pure PET. A reason for the increase in the lamellar thickness might be that the formation of thinner lamellar stacks by secondary crystallization was significantly restricted because of the increased glass‐transition temperature. At high crystallization temperatures above 200 °C, the diffusion rates of noncrystallizable components were faster than the growth rates of crystals, with most of the noncrystallizable components escaping from the lamellar stacks. As a result, the blend showed an interfibrillar or interspherulitic morphology. © 2002 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 317–324, 2002  相似文献   

5.
Poly(ethylene terephthalate) (PET) was blended with a frustrated liquid‐crystalline polymer, poly(ethylene terephthalate‐co‐4,4′‐bibenzoate) (PETBB55), in the weight ratio 70:30. Under the melt conditions used for blending, NMR analysis showed that some transesterification had occurred. Accordingly, the blended product resembled a blocky copolymer more closely than it did a physical blend. A random copolymer with the same composition was synthesized for comparison. The study examined the effect of the comonomer distribution (blocky vs random) on the thermal behavior and oxygen transport properties of the glassy and cold‐drawn polymers. The glass‐transition temperatures and the crystallization behavior suggested that the PETBB55 blocks phase‐separated as very small domains. Higher levels of orientation, as indicated by higher densities and higher trans glycol fractions, were achieved by the cold drawing of the blocky copolymer. It was speculated that the cold drawing of the blocky copolymer at temperatures up to the glass‐transition temperature of the PETBB55 blocks produced highly oriented PETBB55 domains. Constraints imposed by connections between PET and the PETBB55 blocks prevented the relaxation of the continuous PET phase, even at temperatures well above the glass‐transition temperature of the PET blocks. In this sense, the blocky copolymer embodied the concept of a self‐reinforcing polymer. As a result, an improved oxygen barrier was obtained over a wider range of cold‐draw temperatures with the blocky copolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 289–307, 2003  相似文献   

6.
The improvement in the oxygen‐barrier properties of poly(ethylene terephthalate) (PET) by orientation and heat setting was examined. Orientation was carried out at 65 °C by constrained uniaxial stretching to a draw ratio of about 4. Heat setting was performed at temperatures from 90 to 160 °C with the specimen taut. Orientation decreased the permeability of PET to almost one‐third that of the unoriented, amorphous polymer because of decreases in both the diffusion coefficient and the solubility coefficient. The proposed two‐phase model for oriented PET consisted of a permeable isotropic amorphous phase (density = 1.335 g/cm3) with ethylene linkages predominately in the gauche conformation and an impermeable oriented phase (density = 1.38 g/cm3) with ethylene linkages that had transformed from the gauche conformation to the trans conformation during stretching. Chain segments in the trans conformation did not possess crystalline order; instead, they were viewed as forming an ordered amorphous phase. Crystallization by heat setting above the glass‐transition temperature did not dramatically affect the permeability. However, a decrease in the diffusion coefficient, offset by an increase in the solubility coefficient, indicated that crystallization affected the barrier properties of the permeable amorphous phase. Analysis of the barrier data, assuming a two‐phase model with variable density for both the permeable and impermeable phases, revealed that the impermeable phase density increased during crystallization, approaching a value of 1.476 g/cm3. This value is consistent with previous measurements of the density of the defective crystalline phase in PET. The density of the permeable amorphous phase decreased concurrently to about 1.325 g/cm3, indicating the appearance of additional free volume. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1679–1686, 2000  相似文献   

7.
Poly(ethylene terephthalate‐co‐ethylene naphthalate) (PETN)/organoclay was synthesized with the solution intercalation method. Hexadecylamine was used as an organophilic alkylamine in organoclay. Our aim was to clarify the intercalation of PETN chains to hexadecylamine–montmorillonite (C16–MMT) and to improve both the thermal stability and tensile property. We found that the addition of only a small amount of organoclay was enough to improve the thermal stabilities and mechanical properties of PETN/C16–MMT hybrid films. Maximum enhancement in both the ultimate tensile strength and initial modulus for the hybrids was observed in blends containing 4 wt % C16–MMT. Below a 4 wt % clay loading, the clay particles could be highly dispersed in the polymer matrix without a large agglomeration of particles. However, an agglomerated structure did form in the polymer matrix at a 6 wt % clay content. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2581–2588, 2001  相似文献   

8.
Finite difference modeling has been used to predict the results of gas transport experiments for a concentration-dependent diffusion coefficient. Experiments on the transport of CO2 in poly(ethylene terephthalate) and poly(ethylene naphthalate) had previously shown a difference between the effective diffusion coefficients for absorption and desorption runs of a double-sided experiment, but this effect had not been seen for single-sided experiments. The finite difference calculations show that such results are to be expected, and the parameters included in the models that attempt to describe the diffusion process in glassy polymers, such as the dual-mode model, and which lead to concentration-dependent diffusion coefficients, can be found by fitting the experimental data for the double-sided experiment using finite difference modeling. The dependence of the effective diffusion coefficient on pressure for the single-sided experiment can be correctly predicted using results from the double-sided experiment for an identical sample. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Ternary blend fibers (TBFs), based on melt blends of poly(ethylene 2,6‐naphthalate), poly(ethylene terephthalate), and a thermotropic liquid‐crystal polymer (TLCP), were prepared by a process of melt blending and spinning to achieve high‐performance fibers. The reinforcement effect of the polymer matrix by the TLCP component, the fibrillar structure with TLCP fibrils of high aspect ratios, and the development of more ordered and perfect crystalline structures by an annealing process resulted in the improvement of the tensile strength and modulus for the TBFs. An increase in the apparent crystallite size with the spinning speed was attributed to the development of larger crystallites and more ordered crystalline structures in the annealed TBFs. The birefringence and density of the TBFs increased with increasing spinning speed, the TBFs becoming more oriented and the crystal packing becoming more enhanced. The molecular orientation was an important factor in determining the tensile strength and modulus of the TBFs. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 395–403, 2004  相似文献   

10.
The preparation of poly(2,6‐dimethyl‐1,4‐phenylene ether)‐b‐poly(ethylene terephthalate) block copolymer was performed by the reaction of the 2‐hydroxyethyl modified poly(2,6‐dimethyl‐1,4‐phenylene ether) (PPE‐EtOH) with poly(ethylene terephthalate) (PET) by an in situ process, during the synthesis of the polyester. The yield of the reaction of the 2‐hydroxyethyl functionalized PPE‐EtOH with PET was close to 100%. A significant proportion of the PET‐b‐PPE‐EtOH block copolymer was found to have short PET block. Nevertheless, the copolymer structured in the shape of micelles (20 nm diameter) and very small domains with 50–200 nm diameter, whereas unmodified PPE formed much larger domains (1.5 μm) containing copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3985–3991, 2008  相似文献   

11.
Segmented polyurethanes (PU) with crystalline soft segments were prepared with different crystalline polyols as soft segments. Morphology and microstructure of the PUs were investigated using Differential Scanning Calorimetry (DSC), Wide‐angle X‐ray Diffraction (WAXD), and Positron Annihilation Lifetime Spectra (PALS). Water vapor transport properties of the PU membranes were measured in the temperature range of crystal melting of their soft segments. Dependence of free volume of the PUs on temperature and the relationship between the free volume and water vapor permeability of the PU membranes were investigated. The results show that the mean free volume size and fractional free volume increase more rapidly in the temperature range of crystal melting than in other temperature intervals. In the specified temperature range, water vapor permeability of the polyester based PU membranes increases significantly, caused by the steep increase in free volume, due to crystal melting of the soft segments. Water vapor permeability of the polyester based PUs exhibits approximately direct correlation with the fractional free volume within the temperature range of crystal melting. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1865–1872, 2005  相似文献   

12.
Poly(ethylene terephthalate‐co‐5‐nitroisophthalate) copolymers, abbreviated as PETNI, were synthesized via a two‐step melt copolycondensation of bis(2‐hydroxyethyl) terephthalate and bis(2‐hydroxyethyl) 5‐nitroisophthalate mixtures with molar ratios of these two comonomers varying from 95/5 to 50/50. Polymerization reactions were carried out at temperatures between 200 and 270 °C in the presence of tetrabutyl titanate as a catalyst. The copolyesters were characterized by solution viscosity, GPC, FTIR, and NMR spectroscopy. They were found to be random copolymers and to have a comonomer composition in accordance with that used in the corresponding feed. The copolyesters became less crystalline and showed a steady decay in the melting temperature as the content in 5‐nitroisophthalic units increased. They all showed glass‐transition temperatures superior to that of PET with the maximum value at 85 °C being observed for the 50/50 composition. PETNI copolyesters appeared stable up to 300 °C and thermal degradation was found to occur in two well‐differentiated steps. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1934–1942, 2000  相似文献   

13.
Segmented copolyesters, namely, poly(butylene terephthalate)–poly(ethylene terephthalate‐co‐isophthalate‐co‐sebacate) (PBT‐PETIS), were synthesized with the melting transesterification processing in vacuo condition involving bulk polyester produced on a large scale (PBT) and ternary amorphous random copolyester (PETIS). Investigations on the morphology of segmented copolyesters were undertaken. The two‐phase morphology model was confirmed by transmission electron microscopy and dynamic mechanical thermal analysis. One of the phases was composed of crystallizable PBT, and the other was a homogeneous mixture of PETIS and noncrystallizable PBT. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2257–2263, 2003  相似文献   

14.
The improvement in oxygen barrier properties of poly(ethylene terephthalate) (PET) by incorporation of an impermeable phase such as crystallinity or talc platelets was examined. Crystallinity was induced by crystallization from the glassy state (cold crystallization). Microlayering was used to create talc‐filled structures with controlled layer architecture. The reduction of permeability in crystallized and talc‐filled PET was well described by Nielsen's model. Changes in permeability of crystalline PET could not be ascribed to the filler effect of crystallites only. Our data on solubility, obtained on the basis of measurements of the oxygen transport coefficients, confirmed a previous finding that the amorphous phase density of PET decreases upon crystallization. The data were amenable to interpretation by free volume theory. Talc‐filled materials processed by different methods showed the same permeability; however, much better mechanical properties were achieved by microlayering. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 847–857, 1999  相似文献   

15.
For as‐extruded amorphous and biaxially orientated polyester films based on poly(ethylene terephthalate), poly(ethylene naphthalate), and copolymers containing poly(ethylene terephthalate) and poly(ethylene naphthalate) moieties, permeability, diffusion, and solubility coefficients are interpreted in terms of chain mobility. The influence of polymer morphology is determined by comparison of the data for as‐extruded amorphous sheets and materials produced with different biaxial draw ratios. The crystallinities of the samples were assessed using differential scanning calorimetry and density measurements. Changes in mobility at a molecular level were investigated using dielectric spectroscopy and dynamic mechanical thermal analysis. The study, in conjunction with our earlier work, leads to the conclusion that the key to understanding differences in gas transport is the difference in local chain motions rather than in free volume. This was illustrated by the permeability results for He, Ar, N2, and O2 in the range of polyesters. However, the permeability of CO2 was found to require alternative explanations because of polymer–penetrant interactions. For biaxially oriented samples, the differences in diffusivity are not only due to differences in local chain motions, but also additional constraints resulting from the increased crystallinity and chain rigidity—which also act to hinder segmental mobility. The effectiveness of the reduction in permeability in the biaxially oriented films is consequently determined by the ability of the polymer chains to effectively align and form crystalline structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2916–2929, 2004  相似文献   

16.
A series of aliphatic–aromatic multiblock copolyesters consisting of poly(ethylene‐co‐1,6‐hexene terephthalate) (PEHT) and poly(L ‐lactic acid) (PLLA) were synthesized successfully by chain‐extension reaction of dihydroxyl terminated PEHT‐OH prepolymer and dihydroxyl terminated PLLA‐OH prepolymer using toluene‐2,4‐diisoyanate as a chain extender. PEHT‐OH prepolymers were prepared by two step reactions using dimethyl terephthalate, ethylene glycol, and 1,6‐hexanediol as raw materials. PLLA‐OH prepolymers were prepared by direct polycondensation of L ‐lactic acid in the presence of 1,4‐butanediol. The chemical structures, the molecular weights and the thermal properties of PEHT‐OH, PLLA‐OH prepolymers, and PEHT‐PLLA copolymers were characterized by FTIR, 1H NMR, GPC, TG, and DSC. This synthetic method has been proved to be very efficient for the synthesis of high‐molecular‐weight copolyesters (say, higher than Mw = 3 × 105 g/mol). Only one glass transition temperature was found in the DSC curves of PEHT‐PLLA copolymers, indicating that the PLLA and PEHT segments had good miscibility. TG curves showed that all the copolyesters had good thermal stabilities. The resulting novel aromatic–aliphatic copolyesters are expected to find a potential application in the area of biodegradable polymer materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5898–5907, 2009  相似文献   

17.
The kinetics of the transesterification reaction between poly(ethylene terephthalate) (PET) and poly(ethylene 2,6‐naphthalate) (PEN) with and without the addition of a chain extender were studied with 1H NMR. Different kinetic approaches were considered, and a second‐order, reversible reaction was accepted for the PET/PEN reactive blend system. The addition of 2,2′‐bis(1,3‐oxazoline) (BOZ) promoted the transesterification reaction between PET and PEN in the molten state. The activation energy of the transesterification reaction for the PET/PEN reactive blend with BOZ (94.0 kJ/mol) was lower than that without BOZ (168.9KJ/mol). The rate constant k took an almost constant value for blend samples with different compositions mixed at 275 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2607–2614, 2001  相似文献   

18.
Poly(ethylene terephthalate)‐co‐poly(propylene glycol) (PET‐co‐PPG) copolymers with PPG ratio ranging from 0 to 0.90 mol% were synthesized by the melt copolycondensation. The intrinsic viscosity, structure, non‐isothermal crystallization behavior, nucleation and spherulitic growth of the copolymers were investigated by Ubbelohde viscometer, Proton Nuclear Magnetic Resonance (1H‐NMR), differential scanning calorimetry, and polarized optical microscopy, respectively. The non‐isothermal crystallization process of the copolymers was analyzed by Avrami, Ozawa, Mo's, Kissinger, and Dobreva methods, respectively. The results showed that the crystallizability of PET was apparently enhanced with incorporating a small amount of PPG, which first rose and then reduced with increasing amount of PPG in the copolymers at a given cooling rate. The crystallization mechanism was a three‐dimensional growth with both instantaneous and sporadic nucleation. Particularly, PET‐co‐PPG containing 0.60 mol% PPG exhibited the highest crystallizability among all the copolymers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Poly(ethylene‐2,6‐naphthalate) fibers were zone‐drawn under a critical necking tension (σc) defined as the minimum tension needed to generate a necking at a given drawing temperature (Td). In the zone drawing under σc, the neck was observed from 110 to 160 °C. The superstructure in a neck zone induced at each Td was studied. The σc value decreased exponentially with increasing Td and dropped to a low level at a higher Td. The draw ratio increased rapidly with Td increasing above 90 °C, but the birefringence and degree of crystallinity decreased gradually. To study the molecular orientation in the neck zone, we measured a dichroic ratio (A/A?) of a C? O band at 1256 cm?1 along a drawing direction in the neck zone with a Fourier transform infrared microscope. A/A? at Td = 110 °C increased rapidly in the narrow neck zone, and that at Td = 140 °C increased in the edge of the wide neck zone. Wide‐angle X‐ray diffraction patterns of the fibers obtained at Td = 130 °C and lower showed three reflections due to an α form, but those at Td = 140 and 150 °C had reflections due to the α form and a β form. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1629–1637, 2001  相似文献   

20.
Polymer nanocomposites consisting of multiwall carbon nanotube (MWCNT) and poly(ethylene 2,6‐naphthalate) (PEN) were prepared by a melt blending process in a twin‐screw extruder. The storage modulus (G′) and loss modulus (G″) of the PEN/MWCNT nanocomposites increased with increasing frequency, and this increment being more significant at low frequency. The terminal zone slope of G′ for the PEN/MWCNT nanocomposites decreased with increasing MWCNT content, and the nonterminal behavior of those was related to the dominant nanotube–nanotube interactions at higher MWCNT content, leading to the formation of the interconnected or network‐like structures of MWCNT in the polymer nanocomposites. The decrease in the slope of the plot of log G′ versus log G″ for the PEN/MWCNT nanocomposites with increasing MWCNT content suggested the changes in the microstructures of the polymer nanocomposites by incorporating MWCNT. The incorporation of very small quantity of MWCNT significantly improved the mechanical properties of the PEN/MWCNT nanocomposites. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1062–1071, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号