首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X‐ray diffraction methods and differential scanning calorimetry were used to investigate the crystalline structure and crystallization kinetics of syndiotactic polystyrene (sPS)/clay nanocomposites. X‐ray diffraction data showed the presence of polymorphism in sPS/montmorillonite (MMT) nanocomposites, which was strongly dependent on the processing conditions (premelting temperature and cooling rate) of the sPS/MMT nanocomposites and on the content of MMT in the sPS/MMT nanocomposites. The α‐crystalline form could be transformed into β‐crystalline forms at higher premelting temperatures. The nonisothermal melt‐crystallization kinetics and melting behavior of the sPS/MMT nanocomposites were also studied at various cooling rates. The correlation of the crystallization kinetics, melting behavior, and crystalline structure of the sPS/MMT nanocomposites was examined. The results indicated that the addition of a small amount of MMT to sPS caused a change in the mechanism of nucleation and the crystal growth of the sPS crystallite. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 560–570, 2003  相似文献   

2.
We investigated the effects of montmorillonite (clay) on the crystallization kinetics of syndiotactic polystyrene (sPS) with isothermal differential scanning calorimetry analyses. The clay was dispersed into the sPS matrix via melt blending on a scale of 1–2 nm or up to about 100 nm, depending on the surfactant treatment. For a crystallization temperature of 240 °C, the isothermal crystallization data were fitted well with the Avrami crystallization equation. Crystallization data on the kinetic parameters (i.e., the crystallization rate constant, Avrami exponent, clay content, and clay/surfactant cation‐exchange ratio) were also investigated. Experimental results indicated that the crystallization rate constant of the sPS nanocomposite increased with increasing clay content. The clay played a vital role in facilitating the formation on the thermodynamically more favorable all‐β‐form crystal when the sPS was melt‐crystallized. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2097–2107, 2001  相似文献   

3.
X‐ray diffraction methods were used in an investigation of the structural changes in syndiotactic polystyrene (sPS)/clay nanocomposites. sPS/clay was prepared by the intercalation of sPS polymer into layered montmorillonite. Both X‐ray diffraction data and transmission electron microscopy micrographs of sPS/clay nanocomposites indicated that most of the swellable silicate layers were exfoliated and randomly dispersed in the sPS matrix. The X‐ray diffraction data also showed the presence of polymorphism in the sPS/clay nanocomposites. This polymorphic behavior was strongly dependent on the thermal history of the sPS/clay nanocomposites from the melt and on the content of clay in the sPS/clay nanocomposites. Quenching from the melt induced crystallization into the α‐crystalline form, and the addition of montmorillonite probably increased heterophase nucleation of the α‐crystalline form. The effect of the melt crystallization of sPS and sPS/clay nanocomposites at different temperatures on the crystalline phases was also examined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 736–746, 2002  相似文献   

4.
Monoalkyl- and dialkyl-imidazolium surfactants were used to prepare organically modified montmorillonites with markedly improved thermal stability in comparison with their alkyl-ammonium equivalents (the decomposition temperatures increased by ca. 100 °C). Such an increase in the thermal stability affords the opportunity to form syndiotactic polystyrene (s-PS)/imidazolium-montmorillonite nanocomposites even under static melt-intercalation conditions in the absence of high shear rates or solvents. Upon nanocomposite formation, s-PS exhibited an improvement in the thermal stability in comparison with neat s-PS, and the β-crystal form of s-PS became dominant. This crystallization response agrees with previous studies of s-PS/pyridinium-montmorillonite hybrids and is tentatively attributed to a heterogeneous nucleation action by the inorganic fillers. © 2003 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys 41: 3173–3187, 2003  相似文献   

5.
X‐ray diffraction methods and differential scanning calorimetry thermal analysis have been used to investigate the structural changes of syndiotactic polystyrene (sPS)/clay nanocomposites. sPS/clay nanocomposites have been prepared by the mixing of sPS polymer solutions with organically modified montmorillonite. X‐ray diffraction data and differential scanning calorimetry results indicate that the dominating crystal forms and their relative fractions in sPS and sPS/clay nanocomposites are different for various premelting temperatures (Tmax's). Higher Tmax's favor the formation of the thermodynamically more stable β‐crystalline form, and its relative fraction has been obtained from the X‐ray diffraction data in the range of 11.5–13°. The intensity of the X‐ray diffraction data in the range of 11.5–13° decreases as the thickness of sPS/clay nanocomposites decreases from 150 to 20 μm. At the same time, the intensity of the X‐ray data in the range of 6–7° becomes sharper as the thickness of sPS/clay nanocomposites decreases. The calculation ratio based on the peak intensities at 6.2 and 6.8° for sPS/clay nanocomposites of equal thickness and crystallinity in the pure β and α forms has also been determined in this study. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1730–1738, 2003  相似文献   

6.
Syndiotactic polystyrene (sPS) has to be processed at high temperatures (i.e. >290°C due to its melting point of 270°C), which approaches its degradation temperature. We aim to facilitate the processing of sPS by lowering its melt temperature and viscosity with a curable epoxy/amine model system as reactive solvent, which will result in a thermoplastic-thermoset polymer blend. As a first step we therefore investigated the melting behaviour of sPS in epoxy monomer, established its phase diagram, and investigated the crystalline form of sPS in these mixtures. DGEBA epoxy monomer is found to be a solvent for syndiotactic polystyrene at temperatures above 220°C. The DGEBA-sPS phase diagram was established by means of DSC, on the basis of crystallization and melting peaks. The form of the curve in the phase diagram indicates that DGEBA is a poor solvent for sPS. In WAXS studies of blends only the β crystalline form was detected, not the δ form, thus no sPS-DGEBA polymer-solvent compounds (clathrates) were detected. However, DGEBA can still serve as a monomer for improved processing as it depresses the crystallization temperature by 20 to 60 K upon addition of 20 to 90 wt% DGEBA respectively, while a 16 to 45 K melting peak depression can be observed by adding 20 to 90 wt% DGEBA.  相似文献   

7.
Syndiotactic polystyrene (sPS) was solidified from the melt under drastic conditions according to a continuous cooling transformation methodology developed by the authors, which covered a cooling rate range spanning from approximately 0.03 to 3000 °C/s. The samples produced, structurally homogeneous across both their thickness and surface, were analyzed by macroscopic methods, such as density, wide‐angle X‐ray diffraction (WAXD), and microhardness (MH) measurements. The density was strictly related to the phase content, as confirmed by WAXD deconvolution. The peculiar behavior encountered (the density first decreasing and then increasing with the cooling rate) was attributed to the singularity of the phases formed in sPS; that is, one of the crystalline phases (α) was less dense than the amorphous phase, and the latter, in turn, was less dense than the other crystalline phase (β). With an increasing cooling rate, the thermodynamically stable phase (β) disappeared first, and it was followed by the α phase. On the other hand, the MH values remarkably depended on the amount of the β phase, the α‐phase content influencing the mechanical properties only to a minor extent. The behavior of the crystallization kinetics was described through a modified multiphase Kolmogoroff–Avrami–Evans model for nonisothermal crystallization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2688–2699, 2007  相似文献   

8.
Polystyrene (PS)/clay nanocomposites were prepared with two different new intercalation organophilic clays, the phosphonium salt (APP) and the ammonium 4‐(4‐adamantylphenoxy)‐1‐butanamine (APB) salts, by emulsion polymerization technique. X‐ray diffraction and transmission electron microscopy were performed to characterize the layered structures of APB‐ and APP‐treated polymer–clay nanocomposites, and both resulted in exfoliated structures. Molecular weights of PS obtained from these nanocomposites are slightly lower than the virgin PS formed under similar polymerization conditions. Coefficient of thermal expansion showed approximately a 44–55% decrease for APB‐ and APP‐intercalated clay nanocomposites relative to the pure PS. Both Tg and thermal decomposition temperature of the PS component in the nanocomposite are higher than the virgin PS, implying that the presence of clay is able to enhance thermal stabilities of the PS. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1781–1787, 2007  相似文献   

9.
This work examined the effect of the pre‐melting temperature (Tmax) on the thermal properties and crystalline structure of four miscible syndiotactic polystyrene (sPS)‐based blends containing 80 wt % sPS. The counterparts for sPS included a high‐molecular‐weight atactic polystyrene [aPS(H)], a medium‐molecular‐weight atactic polystyrene [aPS(M)], a low‐molecular‐weight atactic polystyrene [aPS(L)], and a low‐molecular‐weight poly(styrene‐co‐α‐methyl styrene) [P(S‐co‐αMS)]. According to differential scanning calorimetry measurements, upon nonisothermal melt crystallization, the crystallization of sPS shifted to lower temperatures in the blends, and the shift followed this order of counterpart addition: P(S‐co‐αMS) > aPS(L) > aPS(M) > aPS(H). The change in Tmax (from 285 to 315 °C) influenced the crystallization of sPS in the blends to different degrees, depending on the counterpart's molecular weight and cooling rate. The change in Tmax also affected the complex melting behaviors of pure sPS and an sPS/aPS(H) blend, but it affected those of the other blends to a lesser extent. Microscopy investigations demonstrated that changing Tmax slightly affected the blends' crystalline morphology, but it apparently altered that of pure sPS. Furthermore, the X‐ray diffraction results revealed that the α‐form sPS crystal content in the blends generally decreased with an increase in Tmax, and it decreased with a decrease in the cooling rate as well. The blends showed a lower α‐form content than pure sPS; a counterpart of a lower molecular weight more effectively reduced the formation of α‐form crystals. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2798–2810, 2006  相似文献   

10.
In this work, a two phase crystallization model based on the extension of the Kolmogoroff approach was proposed and verified by comparison with experimental isothermal and nonisothermal crystallization data of Syndiotactic Polystyrene (sPS) in a very wide range of cooling rates, up to 600 °C/s. To investigate the effects of high cooling rate on the sPS crystalline structure, a homemade apparatus was adopted. The morphology in solid samples was analyzed by densitometry, IR spectroscopy, and X‐rays diffraction. The coupling of these techniques allows the determination of the fractions of different crystalline phases. In agreement with melt‐crystallization studies of sPS proposed by different authors, either α and β forms could be produced depending on the thermal history of the sample. Results show that the stable β form is favored for specimens solidified at higher temperature or under low cooling rates, whereas α and mesomorphic forms are favoured at low temperature or high cooling rates. The proposed multiphase crystallization kinetics model successfully described all the range of experimental data. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1757–1766, 2010  相似文献   

11.
Polyethylene/montmorillonite clay nanocomposites were obtained via direct melt intercalation. The clay was organically modified with four different types of quaternary ammonium salts. The objective of this work is to study the use of montmorillonite clay in the production of nanocomposites by means on rheological, mechanical and crystallization properties of nanocomposites and to compare to the properties of the matrix and PE/unmodified clay nanocomposites. In general, the tensile test showed that the yield strength and modulus of the nanocomposites are close to the pure PE. Apparently, the mixture with Dodigen salt seems to be more stable than the pure PE and PE/unmodified clay.  相似文献   

12.
A study on the thermal behavior and flammability properties of the heterophasic polypropylene-(ethylene-propylene) copolymer (PP-EP)/poly(ethylene vinyl acetate) (EVA)/montmorillonite nanocomposite is presented. Nanoclay nanocomposites were prepared using a twin screw extruder. Both the fluidity of the EVA phase and compatibility conditions between PP-EP and EVA were used in order to obtain the required nanocomposites. Therefore, no additional compatibilizer was required to achieve the clay dispersion. Products exhibited the partially exfoliated/intercalated nanoclay dispersion. Thermogravimetric analyses indicated that nanoclays retard thermal degradation depending on nanoclay concentration. The retarding process was assigned to the exfoliation and dispersion of the silicate layers which impeded heat diffusion to the macromolecules. Thermal studies, under non-isothermal crystallization, indicated the lack of influence of nanoclay on the thermal behavior. Flammability characteristics were however affected by the nanoclay layers which overall generated flame retardation both in the EVA host and in the complex nanocomposites.  相似文献   

13.
Copolymerizations of styrene and the polyhedral oligomeric silsesquioxane (POSS)–styryl macromonomer 1‐(4‐vinylphenyl)‐3,5,7,9,11,13,15‐heptacyclopentylpentacyclo [9.5.1.13,9.15,15.17,13] octasiloxane have been performed with CpTiCl3 in conjunction with methylaluminoxane. Random copolymers of syndiotactic polystyrene (sPS) and POSS have been formed and fully characterized with 1H and 13C NMR, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. NMR data reveal a moderately high syndiotacticity of the polystyrene backbone consistent with this use of CpTiCl3 as a catalyst and POSS loadings as high as 24 wt % and 3.2 mol %. Thermogravimetric analysis of the sPS–POSS copolymers under both nitrogen and air shows improved thermal stability with higher degradation temperatures and char yields, demonstrating that the inclusion of the inorganic POSS nanoparticles makes the organic polymer matrix more thermally robust. The polymerization activity and thermal stability are also compared with those of reported atactic polystyrene–POSS copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 885–891, 2002; DOI 10.1002/pola.10175  相似文献   

14.
Syndiotactic polystyrene (sPS) and polyamide-6 (PA6) are immiscible and incompatible and have been recognized. In this study, sulfonated syndiotactic polystyrene (SsPS-H) is employed as compatibilizer in the blend of sPS/PA6. During melt blending, the sulfonic acid groups of the SsPS-H can interact strongly with the amine end-groups of PA6 through acid-base interaction. In addition, SsPS-H is miscible with sPS when SsPS-H content is less than 20 wt.%. Therefore, the addition of SsPS-H to sPS/PA6 blends reduces the dispersed phase size and improves the adhesion between the phases. The glass transition temperatures of the PA6 component in the compatibilized blends shift progressively towards higher temperature with the content of SsPS-H-12 increase, indicating enhanced compatibility. On the other hand, the progressive lowering of the melting point and crystallization temperatures of PA6 in the blends with increasing SsPS-H contents compared to the incompatibilized blend, provide some insight into the level of interaction between the PA6 and SsPS-H. The compatibilized blends have significantly higher impact strength than the blends without SsPS-H. The best improvement in the impact strength of the blends was achieved with the content of the SsPS-H (11.9 mol%) about 5 wt.%.  相似文献   

15.
The crystallization behavior of miscible syndiotactic polystyrene (sPS) and atactic polystyrene (aPS) blends with different sPS/aPS weight ratios was investigated in supercritical CO2 by using Fourier‐transform infrared spectroscopy, differential scanning calorimetry, and wide‐angle X‐ray diffraction. Supercritical CO2 and aPS exhibited different effects on the conformational change of sPS and competed with each other. Increasing the content of amorphous aPS in the blends made its effect on the conformational change of sPS gradually surpass that of supercritical CO2. Supercritical CO2 favored the formation of the helical conformation of sPS in lower temperature range and the all trans planar conformation in higher temperature range, instead of forming the latter one only in higher temperature range in ambient atmosphere. However, increasing aPS content in the blends pushed the range for forming the helical conformation to lower temperature and made the all trans planar conformation dominant in aPS/sPS 25/75 blend after treating in supercritical CO2 above 60 °C. The all trans planar zigzag conformation was more favorable than the helical conformation after mixing aPS in sPS in supercritical CO2. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1755–1764, 2007  相似文献   

16.
The multiple melting behavior of syndiotactic polystyrene (sPS) and its possible mechanisms via preexisting lamella types and/or scanning-induced lamellar reorganization were investigated by using X-ray diffraction, DSC, and scanning electron microscopy. Melt-crystallized sPS samples, upon DSC scanning, exhibited three melting peaks (I, II, III). A morphological analysis showed that flat-on lamellae develop first, which yield P-I and P-II melting, and during scanning recrystallize to thickened edge-on lamellae with a P-III melting peak. Upon scanning, melting of P-I (crystal of the lowest melting peak) is followed by repacking into thickened P-III crystal, the lamella of which also reoriented to a perpendicular orientation. The P-II crystal, however, melts at temperatures too close to the melting temperature of P-III; thus, during scanning up, the P-II crystal simply melts without sufficient time to repack into the thickened P-III crystal. In addition to the P-III crystal species that can be added by melting P-I and repacking to P-III, it is believed that preexistence of different lamella crystals was jointly responsible for the multiple melting. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3210–3221, 2000  相似文献   

17.
Syndiotactic polystyrene (sPS) is a new semi-crystalline thermoplastic which is believed to fill the price-performance gap between engineering and commodity plastics. In order to reduce the high processing temperature of sPS (>290°C), an epoxy-amine model system was used as a reactive solvent. Such a processing aid can be used to achieve a 50 to 500 fold lowering of the melt viscosity. When initially homogeneous solutions of sPS in a stoechiometric epoxy-amine mixture are thermally cured, Reaction Induced Phase Separation (RIPS) takes place, leading to phase separated thermoplastic-thermoset polymer blends. We focus our study on low (wt% sPS < 20%) and high concentration blends (wt% sPS > 60%) prepared by two processing techniques (mechanical stirring in a laboratory reactor or internal mixer/ reactive extrusion respectively). These blends have different potential interests. Low concentration blends (sPS domains in an epoxy-amine matrix) are prepared to create new, tunable blend morphologies by choosing the nature of the phase separation process, i.e. either crystallisation followed by polymerization or polymerization followed crystallisation. High concentration blends (sPS matrix containing dispersed epoxy-amine particles after RIPS) are prepared to facilitate the extrusion of sPS. In this case, the epoxy amine model system served as a reactive solvent. The time to the onset of RIPS is in the order of 7-9 min for low concentration blends, while it increases to 20-45 min for high concentration samples, as the reaction rates are substantially slowed down due to lower epoxy and amine concentrations. During the curing reaction the melting temperature of sPS in the reactive solvent mixture evolves back from a depressed value to the level of pure sPS. This indicates a change in the composition of the sPS phase, caused by (complete) phase separation upon reaction. We conclude that our epoxy amine system is suited for reactive processing of sPS, where final properties depend strongly on composition and processing conditions.  相似文献   

18.
The analysis of chloroform vapor sorption at 35°C in semicrystalline syndiotactic polystyrene samples shows remarkably different sorption isotherms, depending on the crystalline form of the samples. In particular, “emptied” clathrate (“emptied” δ form) samples are characterized by higher equilibrium sorption levels and the differences are particularly relevant for low vapor activities. Moreover, sorption kinetics detected at a vapor activity equal to 0.5 show that in the case of “emptied” δ form samples the sorption rate is much higher than for the other semicrystalline samples. The larger sorption equilibrium uptakes and sorption rates of the “emptied” δ form samples are essentially due to their ability to absorb chloroform, already for low activities, by clathration in the crystalline phase. The measured equilibrium uptakes and sorption kinetics suggest that “emptied” δ form samples of syndiotactic polystyrene could be suitable for removing polluting chlorinated compounds from vapor and liquid streams. © 1997 John Wiley & Sons, Inc.  相似文献   

19.
X-ray diffraction and optical microscopy characterization were performed to evaluate the phenomenon of alteration of polymorphism of syndiotactic polystyrene (s-PS) in the presence of other blending miscible polymers: poly(2,6-dimethyl-p-phenylene oxide) (PPO) or atactic polystyrene (a-PS). Both α and β crystal forms were observed in the neat s-PS sample, but only β-form crystal was found in miscible blends of s-PS with a-PS or PPO. The order and neighboring chain segments of neat s-PS are different from those of s-PS/PPO or s-PS/a-PS blends; thus, it is plausible that the greater randomness in the melt state of s-PS/a-PS or s-PS/PPO blends might be unfavorable for formation of α-form crystals from melts. The final spherulitic morphology the s-PS/a-PS or s-PS/PPO blends suggests that the amorphous-state miscibility of does not change much the spherulitic structure of s-PS. The radial growth rate is, in general, depressed with the presence of blending miscible polymers in s-PS of equal Tg or PPO of higher Tg. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2725–2735, 1998  相似文献   

20.
Syndiotactic polystyrene (sPS) has various crystalline forms such as α, β, γ, and δ forms, and a mesophase depending on the preparation method. In this study, we focused on the mesophase with the molecular cavity of sPS, which is obtained by step‐wise extraction of the guest molecules from the sPS δ form. To prepare the mesophase containing different shapes and sizes of the cavity, two kinds of the sPS δ form membrane cast from either toluene or chloroform solution were first prepared and then the guest molecules were removed by a step‐wise extraction method using acetone and methanol. We could succeed in the preparation of two kinds of mesophase with different shapes and sizes of the molecular cavity. Either toluene or chloroform vapor sorption to the sPS mesophase membranes was examined at 25 °C. Sorption analysis indicates that the mesophase with large molecular cavities can mainly sorb large molecules; on the other hand, the mesophase with small cavities can sorb only the small molecules, and is unable to sorb a large amount of large molecule because the cavity was too small to sorb the large molecules. Therefore, the sPS mesophase membrane has sorption selectivity based on the size of the molecular cavity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 238–245, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号