首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Interfacial slip between polymer melt under steady shear has been studied using a simplified multilayer structure. In this investigation, interfacial slip under dynamic shear was studied by calculating the angular displacements of the multilayer structure and its component layers. On the basis of the angular displacements, a slip index was defined to quantify the degree of interfacial slip. A relationship governing the rheological behavior of the multilayer structure under slip and nonslip condition was established. These results were correlated with equations derived from consideration of energy equilibrium in the multilayer structure. Polymer multilayer structures of high‐density polyethylene/polystyrene and liquid crystal polymer(LCP)/poly ethylene naphthalate(PEN) were investigated. Of all the polymers investigated, large interfacial slip was found at LCP/PEN interface under dynamic shear. The high rigidity and alignment along the interface of LCP molecules was believed to prevent chain entanglement in the interfacial layer and therefore promote interfacial slip at the interface. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2683–2693, 2005  相似文献   

2.
Polymer blends based on poly(ethylene 2,6‐naphthalate) (PEN) and poly‐(ethylene terephthalate) (PET) reinforced with a thermotropic liquid crystal polymer (TLCP) were prepared using a melt blending process. Polymer blends consisting of conventional cheap polyester with a small quantity of expensive TLCP are of interest from an economic point of view. The shear viscosity of the TLCP and polyester blends decreased with increasing shear rate and depended on TLCP content. The lower values of the structural viscosity index for the TLCP and polyester blends were attributed to the formation of fibrillar TLCP structures having elongated fibrils in the polyester matrix. The TLCP/PEN blends exhibited long TLCP fibrils that had smaller average diameters and narrower distributions of the diameter compared with those of the TLCP/PET blends. The higher shear force and lower viscosity ratio observed may favor the in situ TLCP fibril formation in the polyester matrix. The viscosity ratio was the most crucial factor in controlling the morphology of the TLCP phase in the TLCP and polyester blends. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3600–3610, 2005  相似文献   

3.
The anisotropic mechanical properties of the thermoplastic elastomer (TPE) in situ reinforced with thermotropic liquid‐crystalline polymer (TLCP) fibers were investigated by uniaxial, strip‐biaxial, and equibiaxial tensile measurements. The in situ composite sheets were prepared from an immiscible blend of a TLCP, Rodrun LC3000, and a TPE, styrene‐(ethylene butylene)‐styrene (SEBS) triblock copolymer, by a melt extrusion process. The uniaxial orientation of the TLCP fibers in the TPE matrix generated during processing yielded a significant mechanical anisotropy in the composites. The biaxial tensile measurements clearly demonstrated the anisotropic mechanical properties of the composites: The modulus in the direction parallel to the machine direction (MD) was considerably higher than that in the transverse direction (TD), even at large deformations; in equibiaxial stretching, the yield strain in the MD was smaller than that in the TD; the composite containing 10 wt % of TLCP exhibited the highest mechanical anisotropy among the composites, with 0–30 wt % TLCP. The latter result was in accord with the SEM observation that the composite with 10 wt % of TLCP possessed the best fibrillar morphology and the highest degree of uniaxial orientation of the TLCP fibers. The yield strains in uni‐ and biaxial elongation for the composite containing 10 wt % of TLCP were almost the same as those for the neat styrene‐ethylene butylene‐styrene. The TLCP phase with good fibrillation did not appreciably alter the original yielding characteristics of the elastomer matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 135–144, 2005  相似文献   

4.
研究了VectraA950/PEI共混体系多层次结构与共混体系动态流变特性的关系.在研究液晶高分子的动态流变特性时,引入Palierne模型对动态实验结果进行预测.结果表明,TLCP分散相在高频时偏离了球形,导致Palierne模型拟合的结果与TLCP/PEI共混体系的实验结果在高频时不吻合.这与VectraA950/PEI共混体系中多层次结构在动态流场中的流变响应有关:在频率偏高时,液晶高分子取向不能完全松弛,易于形成各向异性结构,在流场作用下,易产生大形变;由于液晶高分子液滴的回缩过程很慢,在频率偏高时,产生的大形变不易回复,所以保留了纤维结构.  相似文献   

5.
A fully exfoliated organoclay in thermotropic liquid crystalline polymer (TLCP) based nanocomposite was prepared by a method combining ultrasonication, centrifugation, solution casting, and heat‐shearing separation. Morphological study showed that the organoclays of 15–25 nm in size dispersed uniformly in TLCP with fully exfoliated structures. The organoclays formed molecular level interactions with TLCP molecules. The interactions did not affect the liquid crystallinity and mesophase structure of TLCP, but they affected the thermal stability and thermal properties of TLCP, increasing the thermal stability and shifting the transition temperatures to the higher ends. Mechanical rheology investigations in the linear viscoelastic region showed that with the exfoliated organoclay in TLCP, more obvious pseudosolidlike behavior appeared in the terminal region. The rigidity of TLCP was enhanced by the presence of the exfoliated organoclay with percolated structures in the TLCP matrix. In steady shear tests, the nanocomposite had the similar shear viscosity and N1 (the first normal stress difference) to those of TLCP in the steady state condition. Percolated structures were easily destroyed by sufficient shear strain and the exfoliated organoclays were oriented along the shear direction, even assisting the neighboring TLCP molecules to align in the flow direction, resulting in a decrease of viscosity and an increase of the N1 slope. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 712–720, 2010  相似文献   

6.
Polymer nanocomposites based on a very small quantity of carbon nanotube (CNT) and thermotropic liquid crystal polymer (TLCP) were prepared by simple melt blending using a twin-screw extruder. Morphological observations revealed that modified CNT was uniformly dispersed in the TLCP matrix and increased interfacial adhesion between the nanotubes and the polymer matrix. The enhancement of the storage and loss moduli of the TLCP nanocomposites with the introduction of CNT was more pronounced at low frequency region, and non-terminal behavior observed in the TLCP nanocomposites resulted from the nanotube-nanotube and polymer-nanotubes interactions. There is significant dependence of the mechanical, rheological, and thermal properties of the TLCP nanocomposites on the uniform dispersion of CNT and the interfacial adhesion between CNT and TLCP matrix, and their synergistic effect was more effective at low CNT content than at high CNT content. The key to improve the overall properties of the TLCP nanocomposites depends on the optimization of the unique geometry and dispersion state of CNT and the interfacial interactions in the TLCP nanocomposites during melt processing. This study demonstrate that a very small quantity of CNT substantially improved thermal stability and mechanical properties of the TLCP nanocomposites, providing a design guide of CNT-filled TLCP composites with as great potential for industrial use.  相似文献   

7.
The article deals with the melting and nonisothermal crystallization behavior of neat poly (phenylene sulphide) (PPS) and its composites with a thermotropic liquid crystalline polymer (TLCP)—Vectra A950, prepared by melt mixing and probed by differential scanning calorimetry. The various macrokinetic models namely, the Ozawa, the modified Avrami, the Tobin, and the Mo models were applied to describe the crystallization kinetics under nonisothermal conditions. The kinetic crystallizabilty of PPS/TLCP composites calculated using the approach of Ziabicki varies depending on these two composite composition‐induced effects. Similarly Mo model predicts that to obtain a higher degree of crystallizabilty for PPS/TLCP composites, a higher cooling rate should be used. The effective energy barrier based on the differential isoconversional method of Friedman is found to be an increasing function of relative degree of melt conversion. The effect is explained in terms of nucleation theory proposed by Wunderlich to crystallization of polymers. The Lauritzen–Hoffman parameters are estimated using G = 1/t0.5 effective activation energy equation proposed by Vyazovkin and Sbirrazzuoli. The Kg values estimated from latter equations are more comparable with values obtained using isothermal crystallization data than 1/t0.5 method. Furthermore, the kinetic analysis using this equation shows a regime transition from regime II to regime III for 100/00, 90/10, 80/20 PPS/TLCP composites, basically attributed to reduced mobility of PPS chains in composites. This regime II to III transition is accompanied by a morphological transition from defective spherulitic sheaf‐like structures to ordered sheaf‐like structures. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1070–1100, 2010  相似文献   

8.
Nylon‐6/glass‐fiber (GF)/liquid‐crystalline‐polymer (LCP) ternary blends with different viscosity ratios were prepared with three kinds of nylon‐6 with different viscosities as matrices. The rheological behaviors of these blends were characterized with capillary rheometry. The morphology was observed with scanning electron microscopy and polarizing optical microscopy. This study showed that although LCP did not fibrillate in binary nylon‐6/LCP blends, LCP fibrillated to a large aspect ratio in some ternary blends after GF was added. The addition of 5 wt % LCP significantly reduced the melt viscosity of nylon‐6/GF blends to such an extent that some nylon‐6/GF/LCP blends had quite low viscosities, not only lower than those of neat resins and nylon‐6/GF blends but also lower than those of corresponding nylon‐6/LCP blends. The mutual influence of the morphology and rheological properties was examined. The great reduction of the melt viscosity was considered the result of LCP fibrillation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1619–1627, 2004  相似文献   

9.
Ternary blend fibers (TBFs), based on melt blends of poly(ethylene 2,6‐naphthalate), poly(ethylene terephthalate), and a thermotropic liquid‐crystal polymer (TLCP), were prepared by a process of melt blending and spinning to achieve high‐performance fibers. The reinforcement effect of the polymer matrix by the TLCP component, the fibrillar structure with TLCP fibrils of high aspect ratios, and the development of more ordered and perfect crystalline structures by an annealing process resulted in the improvement of the tensile strength and modulus for the TBFs. An increase in the apparent crystallite size with the spinning speed was attributed to the development of larger crystallites and more ordered crystalline structures in the annealed TBFs. The birefringence and density of the TBFs increased with increasing spinning speed, the TBFs becoming more oriented and the crystal packing becoming more enhanced. The molecular orientation was an important factor in determining the tensile strength and modulus of the TBFs. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 395–403, 2004  相似文献   

10.
Blends were synthesized via the melt blending of a thermotropic liquid‐crystalline polymer (TLCP) and a poly(butylene terephthalate) (PBT) hybrid containing 2 wt % organoclay. A TLCP was also synthesized with side groups based on a nematic liquid‐crystalline phase. The blends of TLCPs with PBT hybrids were melt‐spun with different concentrations of the liquid‐crystalline polymer and different draw ratios (DRs) to produce monofilaments. Regardless of the TLCP concentration in the hybrids, transmission electron microscopy photographs proved that the clay layers of the organoclay were intercalated and partially exfoliated in the PBT matrix. At DR = 1, the maximum enhancement in the ultimate tensile strength was observed for blends containing 8% TLCP, and the tensile strength decreased with further increases in the TLCP concentration. The initial modulus monotonically increased with increasing TLCP concentration. When DR increased from 1 to 44, the increased stretching caused the tensile property to decrease significantly, debonding to occur, and voids to form. These trends with increasing DR were observed in all the systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3667–3676, 2004  相似文献   

11.
A novel phosphorus‐containing thermotropic liquid crystalline copolyester with flexible spacers (P‐TLCP‐FS) was synthesized by melt transesterification from p‐acetoxybenzoic acid (p‐ABA), terephthalic acid (TPA), ethylene glycol, and acetylated 2‐(6‐oxid‐6H‐dibenz(c,e) (1,2) oxaphosphorin 6‐yl) 1,4‐benzenediol (AODOPB). The chemical structure and properties of the obtained P‐TLCP‐FS were characterized by Fourier‐transform infrared spectroscopy (FT‐IR), proton nuclear magnetic resonance spectroscopy (1H‐NMR), inherent viscosity measurements, differential scanning calorimetry (DSC), thermogravimetry (TGA), polarizing light microscopy (PLM), and X‐ray diffraction (XRD) analysis. P‐TLCP‐FS had inherent viscosities of 0.92–1.12 dL/g and exhibited low and wide mesophase temperatures, ranging from 185 to 330 °C, which can match with the processing temperatures of most conventional polymers and high flame retardancy with a limiting oxygen index value of 70% and UL‐94 V‐0 rating. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5752–5759, 2008  相似文献   

12.
Immiscible blends of thermotropic liquid crystalline polymers (TLCP) and a flexible polymer matrix show viscosity reductions and extensive fiber formation under certain flow conditions. Here we study these phenomena by directly examining the TLCP component's molecular orientation and the dispersed phase morphology. The rheology and morphology of blends of polybutylene terephthalate and a thermotropic copolyester (HX-8000 series, DuPont) at concentrations varying from 5 to 30 wt % of TLCP are characterized. It is found that the blends show viscosity reduction as well as stable fiber formation at shear rates dependent on the TLCP content. Wide-angle X-ray scattering is performed to measure the degree of molecular orientation of the TLCP phase. A deconvolution scheme isolates the scattering from the TLCP in the blends and a molecular model enables extracting an experimental orientation factor. It was found that a highly microfibrillated TLCP phase is coupled with an increase in the TLCP molecular orientation to values close to the pure TLCP at similar processing conditions. Further, the microfibrillated TLCP phase is found to be stable within the testing time. Current hypotheses about fiber formation in immiscible blends are tested against the experimental observations. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1769–1780, 1998  相似文献   

13.
A series of thermotropic liquid crystalline polyesters containing phosphorus and aromatic ether groups (TLCP‐AEs) were synthesized from p‐acetoxybenzoic acid (p‐ABA), terephthalic acid (TPA), 4,4′‐oxybis(benzoic acid) (OBBA), and acetylated 2‐(6‐oxid‐6H‐dibenz(c,e) (1,2) oxaphosphorin 6‐yl) 1,4‐benzenediol (DOPO‐AHQ). The chemical structure and the properties of TLCP‐AEs were characterized by Fourier‐transform spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR), differential scanning calorimetry (DSC), X‐ray diffraction (XRD), thermogravimetry analysis (TGA), scanning electronic microscopy (SEM), polarizing optical microscopy (POM), limiting oxygen index, and UL‐94 tests, respectively. The results showed that TLCP‐AEs had low and broad mesophase temperatures (230–400 °C). TLCP‐AEs also showed excellent thermal stability; their 5%‐weight‐loss temperatures were above 440 °C and the char yields at 700 °C were higher than 45 wt %. All TLCP‐AE polyesters exhibited high flame retardancy with a LOI value of higher than 70 and UL‐94 V‐0 rating. The SEM observation revealed that TLCP‐AEs had good fibrillation ability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1182–1189, 2010  相似文献   

14.
The crystallization and morphology of poly(ethylene‐2,6‐naphthalene dicarboxylate) (PEN) containing, as nucleating agents, a sodium salt of a copolymer of ethylene and acrylic acid or a sodium salt of a copolymer of ethylene and methacrylic acid, were investigated with differential scanning calorimetry, polarized optical microscopy, and small‐angle light scattering. The nucleating agents accelerated the crystallization rate at high temperatures by decreasing the surface free energy barrier hindering nucleation. Meanwhile, the nucleating agents with flexible chains could also improve the mobility of the PEN chains and increase the crystallization rate at low temperatures. Hedrites were observed when PEN was crystallized at high temperatures, whereas crystallization at low temperatures led to the formation of spherulites. Similar but smaller morphologies were obtained in the presence of nucleating agents. With nucleating agents, the spherulites formed at low temperatures were less perfect, although the optical properties of the spherulites were not influenced. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2387–2394, 2002  相似文献   

15.
The weak interfaces between immiscible polymer pairs typically fail through chain scission. The critical facture toughness for such interfaces is closely related to the density of intermolecular entanglements at the interface. From scaling analysis, a simple correlation between facture toughness and chain entanglement was developed. It predicts well the interfacial adhesion for many immiscible polymer pairs found in the literature. For an interface with block copolymer reinforcement, its critical fracture toughness comes from both intermolecular entanglements of homopolymers and copolymer bridges. In the chain scission regime (low copolymer coverage), the block copolymer contribution is found proportional to copolymer interfacial coverage, with the coefficient being the energy to stretch and break a copolymer chain. The chain‐breaking energy for different copolymers was evaluated and compared to literature data. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2313–2319, 2009  相似文献   

16.
The kinetics of the transesterification reaction between poly(ethylene terephthalate) (PET) and poly(ethylene 2,6‐naphthalate) (PEN) with and without the addition of a chain extender were studied with 1H NMR. Different kinetic approaches were considered, and a second‐order, reversible reaction was accepted for the PET/PEN reactive blend system. The addition of 2,2′‐bis(1,3‐oxazoline) (BOZ) promoted the transesterification reaction between PET and PEN in the molten state. The activation energy of the transesterification reaction for the PET/PEN reactive blend with BOZ (94.0 kJ/mol) was lower than that without BOZ (168.9KJ/mol). The rate constant k took an almost constant value for blend samples with different compositions mixed at 275 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2607–2614, 2001  相似文献   

17.
Polycarbonate (PC) was melt blended with small amount of liquid‐crystalline polymer (LCP) and various contents of glass beads (GB) having different diameters. The rheological measurements indicated that the GB addition increased the viscosity ratio and seemed unfavorable to the LCP fibrillation. However, the morphological observation showed that the LCP fibrillation was promoted by the GB addition and varied with the GB packing. With the increased GB packing by increasing the GB content and/or decreasing the GB diameter, LCP deformed from spheres and ellipsoids into stretched ellipsoids at lower shear rates and into long fibrils at higher shear rates. Although higher content of smaller GB jammed into the larger LCP droplets and inhibited the LCP fibrillation, very long LCP fibrils formed at higher shear rates at a high enough packing of GB. The relationship between GB packing and LCP fibrillation revealed two kinds of hydrodynamic effects of GB promoting the LCP fibrillation: at lower GB packing, the shear flow was enhanced by the high local shear between GB, in quantity; and for a high enough GB packing, the shear flow was changed, in quality, into elongational flow, which was more effective for the LCP fibrillation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1020–1030, 2006  相似文献   

18.
A dendritic monomer with bipolar side groups containing dendritic carbazole and oxadiazole structures was synthesized by a convergent strategy. The homopolymer was synthesized through a conventional radical polymerization. The number‐average molecular weight determined by gel permeation chromatography was 40,000 g/mol. Its 5% weight loss temperature was 358 °C. Its photophysical properties were studied in solution and in film. The photoluminescent emission peak of the film was at 408 nm, which had a blue shift of 9 nm compared with that of the tetrahydrofuran solution. And there was an energy transfer from oxadiazole to carbazole. The highest occupied molecular orbital (HOMO) and lower unoccupied molecular orbital (LUMO) levels calculated from cyclic voltammetry data were ‐5.55 and ‐2.52 eV, respectively, and the band gap was 3.03 eV, which suggested that the polymer had both hole‐ and electron‐transporting capabilities. The efficiencies of the single‐layer device based on this homopolymer were much higher than those of the same‐generation homopolymer without the oxadiazole moiety. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Solutions of a binaphthoxy phosphazene copolymer (containing chiral 2,2′‐dioxy‐1,1′‐binaphthyl units with 50% R and S configurations distributed along the chains) in N‐methyl pyrrolidone were studied by means of continuous flow experiments and small amplitude oscillatory flow tests. A sudden viscosity decrease was observed in the polymer concentration range (39–40 wt %), evidencing a liquid‐crystalline polymer behavior. This has been confirmed by other rheological methods which have demonstrated that, for a sufficiently high concentration, the solutions of the binaphthoxy phosphazene copolymer give rise to a lyotropic system with formation of rigid rods (axial ratio of 10) stacked parallel to each other. The lyotropic properties of our binaphthoxy phosphazene copolymer are compatible with a regular helical structure, similar to that found for a homoleptic binaphthoxy phosphazene, which contains only S configuration. This suggests that the chains of 50% R/S binaphthoxy phosphazene copolymer are, in average, close to the strictly alternating RS copolymeric structure of the syndiotactic isomer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

20.
Poly(ε‐caprolactone)/polylactide blend (PCL/PLA) is an interesting biomaterial because the two component polymers show good complementarity in their physical properties. However, PCL and PLA are incompatible thermodynamically and hence the interfacial properties act as the important roles controlling the final properties of their blends. Thus, in this work, the PCL/PLA blends were prepared by melt mixing using the block copolymers as compatibilizer for the studies of interfacial properties. Several rheological methods and viscoelastic models were used to establish the relations between improved phase morphologies and interfacial properties. The results show that the interfacial behaviors of the PCL/PLA blends highly depend on the interface‐located copolymers. The presence of copolymers reduces the interfacial tension and emulsified the phase interface, leading to stabilization of the interface and retarding both the shape relaxation and the elastic interface relaxation. As a result, besides the relaxation of matrices (τm) and the shape relaxation of the dispersed PLA phase (τF), a new relaxation behavior (τβ), which is attribute to the relaxation of Marangoni stresses tangential to the interface between dispersed PLA phase and matrix PCL, is observed on the compatibilized blends. In contrast to that of the diblock copolymers, the triblock copolymers show higher emulsifying level. However, both can improve the overall interfacial properties and enhance the mechanical strength of the PCL/PLA blends as a result. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 756–765, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号