首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present an approach to the synthesis of biofunctionalized block copolymer nanoparticles based on ring‐opening metathesis polymerization; these nanoparticles may serve as novel scaffolds for the multivalent display of ligands. The nanoparticles are formed by the self‐assembly of diblock copolymers composed of a hydrophobic block and a hydrophilic activated block that can be functionalized with thiolated ligands in aqueous media. The activated block enables control over the orientation of the displayed ligands, which may be sugars, peptides, or proteins engineered to contain cysteine residues at suitable locations. The nanoparticle diameter can be varied over a wide range through changes in the composition of the block copolymer, and biofunctionalization of the nanoparticles has been demonstrated by the attachment of a peptide previously shown to inhibit the assembly of anthrax toxin. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 928–939, 2006  相似文献   

2.
Shell‐functionalized polymeric nanoparticle was prepared through the method of polymerization‐induced self‐assembly of block copolymers [poly(2,3‐bis(2‐bromoisobutyryloxymethyl)‐5‐norbornene)‐block‐poly(7‐oxanorborn‐5‐ene‐exo‐exo‐2,3‐dicarboxylic acid dimethyl ester), PBNBE‐b‐PONBDM] via one‐pot ring‐opening metathesis polymerization of 2,3‐bis(2‐bromoisobutyryloxymethyl)‐5‐norbornene (BNBE) and 7‐oxanorborn‐5‐ene‐exo‐exo‐2,3‐dicarboxylic acid dimethyl ester (ONBDM) in a selective solvent. The compositions and the molecular weights of the copolymers were estimated by 1H‐NMR and gel permeation chromatography. The micelles were characterized by dynamic light scattering, transmission electron micrograph, and atomic force microscopy. The results indicated that the spherical micelles constructed with bromine‐bearing PBNBE shell and PONBDM core were stable and reproducible in toluene. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
4.
For many years, olefin metathesis has been a central topic of industrial and academic research because of its great synthetic utility. The employed initiators cover a wide range of compounds, from simple transition‐metal salts to highly sophisticated and well‐defined alkylidene complexes. Currently, ruthenium‐based catalysts are at the center of attention because of their remarkable tolerance toward oxygen, moisture, and numerous functionalities. This article focuses on recent developments in the field of ring‐opening metathesis polymerization using ruthenium‐based catalysts. ruthenium‐based initiators and their applications to the preparation of advanced polymeric materials are briefly reviewed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2895–2916, 2002  相似文献   

5.
In an attempt to introduce monomer sequence control in a growing polynorbornene via ring‐opening metathesis polymerization, we employ dioxepins to efficiently determine the location of the monomers on the macromolecule backbone. Owing to the acid‐labile acetal group, dioxepins allow scission of the polymer at the point of the dioxepin insertion and thus provide an indirect way to determine the monomer location. Additionally, dioxepins are used as spacers in the synthesis of multiblock polynorbornenes that are readily cleavable to afford the individual polynorbornene blocks. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1236–1242  相似文献   

6.
Latex particles based on 1,4‐polybutadiene were synthesized via dispersion ring‐opening metathesis copolymerization of 1,5‐cyclooctadiene with a α‐norbornenyl poly(ethylene oxide) macromonomer. Stable but polydisperse colloidal dispersions in the 50 nm to 10 μm size range were obtained. In this work, particular attention was paid to the effects of the kinetics of copolymerization on the structure of the graft copolymers formed and on the onset of turbidity. Strategies to prepare monodisperse polybutadiene particles were also designed through the growth of a polybutadiene shell from a well‐defined polynorbornene seed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1154–1163, 2004  相似文献   

7.
This article proposes the first report on the synthesis of nanometric crosslinked polynorbornene particles by ring‐opening metathesis polymerization in dispersion using ruthenium‐based complex (PCy3)2Cl2Ru?CHPh as initiator. Stable but raspberry‐shaped particles were obtained. In this study, a particular attention was paid to the influence of the crosslinker nature and addition mode on reaction kinetics and morphology of the latex particles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
This study describes the synthesis of polynorbornene colloidal particles able to release active molecules in response to pH change. Such functionalized polynorbornene latices with surface active molecules have been obtained by ring‐opening metathesis copolymerization in a dichloromethane/ethanol medium in the presence of α‐norbornenyl poly(ethylene oxide) macromonomer. Two different strategies of introduction of the active molecule—either at their periphery or at their core— have been contemplated. The particles have been characterized by both dynamic light scattering and transmission electron microscopy. Their size was found to range from 260 to 600 nm. The release of the active molecules was monitored by UV spectrometry. After 48 h in an appropriate HCl buffer (pH = 3) more than 80% of the initially linked active molecule was released. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 217–229, 2005  相似文献   

9.
Atom transfer radical polymerization (ATRP) and ring‐opening polymerization (ROP) were combined to synthesize poly(?‐caprolactone‐co‐octadecyl methacrylate‐co‐dimethylaminoethyl methacrylate) copolymers possessing a triblock or random block structure. Various synthetic pathways (sequential or simultaneous approaches) were investigated for the synthesis of both copolymers. For the preparation of these copolymers, an initiator with dual functionality for ATRP/anionic ring‐opening polymerization, 2‐hydroxyethyl 2‐bromoisobutyrate, was used. Copolymers were prepared with good structural control and low polydispersities (weight‐average molecular weight/number‐average molecular weight < 1.2), but one limitation was identified: the dimethylaminoethyl methacrylate (DMAEMA) block had to be synthesized after the ?‐caprolactone block. ROP could not proceed in the presence of DMAEMA because the complexation of the amine groups in poly(dimethylaminoethyl methacrylate) deactivated tin(II) hexanoate, which was used as a catalyst for ROP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1498–1510, 2005  相似文献   

10.
Functional polynorbornenes (PNBEs) containing pyrrolidine moiety and bis(trifluoromethyl)biphenyl side group were synthesized via ring‐opening metathesis polymerization (ROMP), and the microstructure of polymer chain was characterized by NMR spectroscopy. Poly(N‐3,5‐bis(trifluoromethyl)biphenyl‐norbornene‐pyrrolidine) (PTNP) and poly(N‐phenyl‐norbornene‐pyrrolidine) (PPNP) are supposed to have practically trans double bonds and adopt isotactic syn conformation, whereas poly(N‐3,5‐bis(trifluoromethyl)biphenyl‐norbornene‐dicarboximide) (PTNDI) has both trans and cis double bonds and atactic microstructure. PTNP, PTNDI, and PPNP have much different dielectric constants of 20, 7, and 3, respectively, which is attributed to both the polar 3,5‐bis(trifluoromethyl)biphenyl group and the stereoregular chain structure. The existence of rigid pyrrolidine moiety has a positive contribution to form the tactic polymer chain during ROMP. Polymers are highly thermal stable up to ~300 °C. Having good dielectric properties and thermal stability, these functional PNBEs are expected as the potential dielectric material in thin film capacitors. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
In this contribution, we reported the synthesis of a series of POSS‐terminated polycyclooctadiene (PCOD) telechelics via ring‐opening metathesis polymerization (ROMP) approach. Toward this end, 1,4‐diPOSS‐but‐2‐ene was synthesized via copper‐catalyzed Huisgen cycloaddition reaction (i.e., click chemistry); it was then used as a chain transfer agent (CTA) for the ROMP of cyclooctadiene. The ROMP was carried out with Grubbs second generation catalyst and the POSS‐terminated PCOD telechelics with variable lengths of PCOD were obtained by controlling the molar ratios of CTA to cyclooctadiene. All the POSS‐terminated PCOD telechelics in bulks were microphase‐separated; the morphologies were quite dependent on the lengths of PCOD midchains. The POSS end groups can promote the crystallization of PCOD chains at room temperature, which was in marked contrast to the case of plain PCOD. Compared to the plain PCOD, the POSS‐terminated PCOD telechelics displayed improved thermal stability and surface hydrophobicity. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 223–233  相似文献   

12.
13.
Dicyclopentadiene (DCPD) and 5‐ethylidene‐2‐norbornene (ENB) and their mixtures were analyzed after ring‐opening metathesis polymerization (ROMP) in the presence of Grubbs catalyst as potential candidate healing agents for self‐healing composite materials using two complementary methods, rotational dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). Following isothermal DMA measurements at room temperature (RT = 25 °C) for 120 min, two consecutive dynamic temperature scan experiments were performed for each system. In the first dynamic temperature scans, there was an initial downward peak slightly above RT in the storage modulus versus temperature curve for samples with relatively slower reaction rates (i.e., DCPD and DCPD‐rich mixtures or low catalyst loadings) due to a combination of the glass transition followed by further residual reaction. However, no or negligible downward peaks were observed for the highly reactive ENB and ENB‐rich samples even at much lower catalyst loadings. Implications of the substantial decrease in storage modulus just above RT for the slowly reacting systems are discussed for healing of damage in composite materials at elevated temperatures. The maximum glass transition temperatures (Tg∞) from DMA of the fully cured samples were determined to be approximately 160 °C for DCPD and 120 °C for ENB, decreasing linearly with increased ENB in the blends. The glass transitions and further residual reactions above the glass transitions were confirmed by DSC. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1771–1780, 2007  相似文献   

14.
Pseudo block and triblock copolymers were synthesized by the cationic ring‐opening copolymerization of 1,5,7,11‐tetraoxaspiro[5.5]undecane (SOC1) with trimethylene oxide (OX) via one‐shot and two‐shot procedures, respectively. When SOC1 and OX were copolymerized cationically with boron trifluoride etherate (BF3OEt2) as an initiator in CH2Cl2 at 25 °C, OX was consumed faster than SOC1. SOC1 was polymerized from the OX‐rich gradient copolymer produced in the initial stage of the copolymerization to afford the corresponding pseudo block copolymer, poly [(OX‐grad‐SOC1)‐b‐SOC1]. We also succeeded in the synthesis of a pseudo triblock copolymer by the addition of OX during the course of the polymerization of SOC1 before its complete consumption, which provided the corresponding pseudo triblock copolymer, poly[SOC1‐b‐(OX‐grad‐SOC1)‐b‐SOC1]. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3233–3241, 2006  相似文献   

15.
A number of classes of polynorbornenes containing cationic iron moieties within their side chains were prepared via ring‐opening metathesis polymerization with a ruthenium‐based catalyst. The iron‐containing polymers displayed excellent solubility in polar organic solvents. The weight‐average molecular weights of these polymeric materials were estimated to be in the range of 18,000–48,000. Thermogravimetric analysis of these polymers showed two distinct weight losses. The first weight loss was in the range of 204–260 °C and was due to the loss of the metallic moieties, whereas the second weight loss was observed at 368–512 °C and was due to the degradation of the polymer backbone. Cyclic voltammetry studies of the iron‐containing polymers showed that the 18 e? cationic iron centers underwent a reduction to give the neutral 19 e? complexes at half‐wave potential (E1/2) = ?1.105 V. Photolysis of the metallated polymers led to the isolation of the norbornene polymers in very good yields. Differential scanning calorimetry studies showed a sharp increase in the glass‐transition temperatures up to 91 °C when rigid aromatic side chains were incorporated into the norbornene polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3053–3070, 2006  相似文献   

16.
The self‐assembling nature and phase‐transition behavior of a novel class of triarm, star‐shaped polymer–peptide block copolymers synthesized by the combination of atom transfer radical polymerization and living ring‐opening polymerization of α‐amino acid‐N‐carboxyanhydride are demonstrated. The two‐step synthesis strategy adopted here allows incorporating polypeptides into the usual synthetic polymers via an amido–amidate nickelacycle intermediate, which is used as the macroinitiator for the growth of poly(γ‐benzyl‐L ‐glutamate). The characterization data are reported from analyses using gel permeation chromatography and infrared, 1H NMR, and 13C NMR spectroscopy. This synthetic scheme grants a facile way to prepare a wide range of polymer–peptide architectures with perfect microstructure control, preventing the formation of homopolypeptide contaminants. Studies regarding the supramolecular organization and phase‐transition behavior of this class of polymer‐block‐polypeptide copolymers have been accomplished with X‐ray diffraction, infrared spectroscopy, and thermal analyses. The conformational change of the peptide segment in the block copolymer has been investigated with variable‐temperature infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2774–2783, 2006  相似文献   

17.
Ring‐opening metathesis polymerization (ROMP) of thioether‐derived oxanorbornene imide ( M1 ) and its copolymerization with various cycloolefin comonomers such as cyclopentene ( M2 ), cyclopent‐3‐en‐1‐ol ( M3 ), cycloheptene ( M4 ), and cyclooctene ( M5 ) using Hoveyda–Grubbs second generation catalyst has been investigated. Polymerizations were performed at two different temperatures (0 and 25 °C) and the obtained functional poly(olefin)s were characterized by nuclear magnetic resonance 1H and 13C (NMR), and infrared spectroscopy as well as size exclusion chromatography, differential scanning calorimetry, and thermogravimetric analysis analyses. Additionally, the dependence of the polymer composition on the reaction temperature and monomer feed was studied with time‐dependent 1H NMR experiments. Copolymerization of M1 with a five‐membered cycloolefin monomer M2 showed relatively low ROMP reactivity irrespective of the reaction conditions in comparison to M3 , M4 , and M5 monomers. In general, the degree of monomer incorporation into poly(olefin)s were determined in the order of M5 > M3 > M4 > M2 , and that sheds light on the effect of cycloolefin ring strain energies in the ruthenium‐alkylidene initiated ROMP. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1741–1747  相似文献   

18.
19.
Diblock copolymers of 5‐(methylphthalimide)bicyclo[2.2.1]hept‐2‐ene (NBMPI) and 1,5‐cyclooctadiene were synthesized by living ring‐opening metathesis polymerization with a well‐defined catalyst {RuCl2(CHPh)[P(C6H11)3]2}. Unhydrogenated diblock copolymers showed two glass transitions due to poly(NBMPI) and polybutadiene segments, such as two glass‐transition temperatures at ?86.5 and 115.3 °C for poly 1a and ?87.2 and 115.3 °C for poly 1b . However, only one melting temperature could be observed for hydrogenated copolymers, such as 119.8 °C for poly 2a and 121.7 °C for poly 2b . The unhydrogenated diblock copolymer with the longer poly(NBMPI) chain (poly 1a ; temperature at 10% mass loss = 400 °C) exhibited better thermal stability than the one with the shorter poly(NBMPI) chain (poly 1b ; temperature at 10% mass loss = 385 °C). Two kinds of hydrogenated diblock copolymers, poly 2a and poly 2b , exhibited relatively poor solubility but better thermal stability than unhydrogenated diblock copolymers because of the polyethylene segments. Poly[(hydrochloride quaternized 2‐norbornene‐5‐methyleneamine)‐b‐butadiene]‐1 (poly 3a ) was obtained after the hydrolysis and quaternization of poly 1a . Dynamic light scattering measurements indicated that the hydrodynamic diameters of the cationic copolymer (poly 3a ) in water (hydrodynamic diameter = 1580 nm without salt), methanol/water (4/96 v/v; hydrodynamic diameter = 1500 nm without salt), and tetrahydrofuran/water (4/96 v/v; hydrodynamic diameter = 1200 nm without salt) decreased with increasing salt (NaCl) concentration. The effect of temperature on the hydrodynamic diameter of hydrophobically modified poly 3a was also studied. The inflection point of the hydrodynamic diameter of poly 3a was observed at various polymer concentrations around 30 °C. The critical micelle concentration of hydrophobically modified poly 3a was observed at 0.018 g dL?1. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2901–2911, 2006  相似文献   

20.
Several random and block copolynorbornenes with side chains containing terminal hydroxyl, amino, methacryloyl or ammonium groups were derived from the functional alkyl ester‐containing norbornenes by ring‐opening metathesis polymerization (ROMP). The main chain of ROMP‐type polynorbornene had a more important role for glass‐transition temperature in comparison with vinyl addition polymerization. There is little effect on glass‐transition temperature (about ?39 °C) of polynorbornenes with different length of alkyl side chain. The organosoluble copolynorbornenes with active crosslinkable methylacryloyl side chains derived from functional hydroxyl group were prepared to improve the thermal stability of poly(methyl methacrylate) [decomposition temperature (Td)10% = 325 °C in nitrogen] by forming networked AB crosslinked polymer (T = 367 °C in nitrogen). The sizes of nanometer‐scale polymeric micelles of block copolymers having hydrophobic alkyl ester and hydrophilic ammonium groups were measured in the range of 11–25 nm by scanning electron microscopy. These polymeric materials with various functional groups or amphiphilic architectures are accessible by ROMP, whose topology makes them particularly attractive for application potential such as biomedical and photoelectric materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4233–4247, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号