首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An organosoluble polyimide based on bipyridyl moiety and an alkoxysilane dye have been developed for second‐order non‐linear optics (NLOs). This bipyridine‐containing polyimide exhibits a glass transition temperature of 254°C and a degradation temperature of 400°C. An NLO‐active semi‐interpenetrating network (IPN) system was prepared by blending the polyimide with the alkoxysilane dye via in situ sol‐gel process of alkoxysilane. The selection of this bipyridine‐containing polyimide as the polymeric matrices provides improved solubility and thermal stability, and most importantly enhanced intermolecular interactions. No aggregation of the NLO chromophores in the polyimide matrices was observed through morphology and NLO studies. Under the limitation of chromophore degradation at elevated temperatures, the pristine poled/cured alkoxysilane dye exhibits poorer long‐term stability. By introducing the polyimide upon a silica network by the semi‐IPN system, randomization of the oriented chromophores can be effectively suppressed. Using in situ contact poling, the r33 coefficients of 2.2–17.0 pm/V were obtained for the optically clear semi‐IPN NLO materials. Excellent temporal stability (100°C) was also achieved for these semi‐IPN materials. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
A series of 10 new poly(heteroarylene methylenes) containing one pyrrole or thiophene ring alternating with a carbon atom in the main chain were synthesized and characterized. The polymers which were synthesized in the air were found to be partially dehydrogenated by the oxygen, that is, the bridge carbon atoms between pyrrole or thiophene rings were partially sp3 atoms and partially sp2 atoms. However the polymers which were synthesized in the flowing nitrogen atmosphere were found to be deoxidized, that is the bridge atoms were sp3 atoms. The deoxidized polymers could be oxidatively dehydrogenated with tetrchlorobenzoquinone. These polymers are useful model systems to investigate the effect of conjugation length on the electronic and optical properties of conjugated polymers. Third‐order optical non‐linearities of the reulting polymers were studied by z‐scan techniques. The results show that the reulting polymers exhibited large third‐order optical non‐linear susceptibilities as large as 10?8 esu. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
4.
A series of dicyanomethylene‐substituted polymers having Y‐type molecular architecture were synthesized by Knoevenagel condensation reaction. The polymers were found to be soluble in organic solvents like tetrahydrofuran and chloroform. From gel permeation chromatography, the molecular weights of the polymers were found to be in the range of 15,300–33,800 g/mol. Thermal analysis showed that the polymers were stable up to 350 °C with glass transition temperature (Tg) in the range of 129–212 °C. These polymers were found to form good optical quality films. The order parameter was calculated to be in the range of 0.01–0.48. Atomic force microscopy indicated prominent morphology changes due to alignment of dipoles after poling. By using Nd:YAG laser of 1064 nm, angular dependence and temperature dependence of second‐harmonic generation intensity were investigated. The geometry optimization, shape of polymers, and restricted torsion angle between acceptor and donor substituents (push–pull system) were calculated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
Stimuli‐responsive bioconjugated hydrogels that can respond to a target antigen (antigen‐responsive hydrogels) were prepared by introducing antigen‐antibody bindings as reversible crosslinks into the gel networks. The preparation conditions of the antigen‐responsive hydrogels and the mechanism of the antigen‐responsive behavior were investigated, focusing on bioconjugated hydrogel structures. This article also focuses on the effect of semi‐interpenetrating polymer network (semi‐IPN) structures on the antigen‐responsive swelling/shrinking behavior of bioconjugated hydrogels with antigen‐antibody bindings. The preparation conditions and the network structures of the bioconjugated hydrogels are discussed in relation to designing antigen‐responsive hydrogels. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2144–2157, 2009  相似文献   

6.
This article reviews our work on the development and optimization of chiral, nonpolar media with large second‐order nonlinear optical responses. We show how molecular engineering, theory, and measurements can be used to optimize this promising class of nonlinear optical materials. We describe how supramolecular alignment into easily processable materials takes advantage of the relevant molecular hyperpolarizabilities. A wide variety of techniques can be used to fabricate bulk materials belonging to the chiral nonpolar symmetry groups, D and D2. The microscopic chromophore alignment schemes that optimize the nonlinear optical response in such materials are deduced from general symmetry considerations for both molecules and bulk. We also speculate on the possible applications of such materials as image‐plane modulators. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2744–2754, 2003  相似文献   

7.
Organic–inorganic hybrid semi‐interpenetrating polymer network (semi‐IPN) gels containing polyfluorenes (PFs) are synthesized by hydrosilylation reaction of joint and rod molecules in toluene, where PFs are poly(9,9‐dihexylfluorene‐2,7‐diyl) (PF6) or, poly(9,9‐dioctylfluorene‐2,7‐diyl) (PF8), joint molecules are 1,3,5,7‐tetramethylcyclotetrasiloxane (TMCTS), or 1,3,5,7,9,11,13,15‐octakis(dimethylsilyloxy)pentacyclo‐[9,5,1,1,1,1]octasilsesquioxane (POSS), and rod molecules are 1,5‐hexadiene (HD) or 1,9‐decadiene (DD). The semi‐IPN gels containing low molecular weight PF6 show higher photoluminescence efficiency (?g) than the toluene solution of PF6L (?s). The semi‐IPN gels composed of long rod molecule of DD and cubic joint molecule of POSS show the most effective increase in the emission intensity. The emission intensity of PF6L increases as formation of the network in the POSS‐DD semi‐IPN gel. The POSS‐DD semi‐IPN gels containing high molecular weight PF6 and PF8 also show the increase of emission intensity than those of the toluene solutions. The semi‐IPN synthesized in cyclohexane show syneresis and phase separation between network structure and PF chains. The semi‐IPN gels containing PF8 show emission peaks at 450 and 470 nm derived from β‐sheet structure of PF8. A systematic study clears correlation between emission property and network structure and/or composition of semi‐IPN gels. The semi‐IPN gels provide emissive self‐standing soft materials with high efficiency and in a narrow wavelength range emission. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 973–984  相似文献   

8.
Four linear polymers containing pendant azo moiety were synthesized through click chemistry for second‐order nonlinear optical study. The polymers were found soluble in most of the polar organic solvents such as tetrahydrofuran (THF), chloroform, and dimethyl formamide (DMF). The polymers showed thermal stability up to 300 °C and glass transition temperatures (Tg) in the range of 120–140 °C. The molecular weights (Mw) of these polymers (measured by gel permeation chromatography) were in the range 37,900–55,000 g/mol. The polymers were found to form optically transparent films by solution casting from THF solution. Order parameters were calculated from UV–vis absorption spectra. The morphology changes in the films after poling were characterized by atomic force microscopy. The angular dependence, temperature dependence, and time dependence of second harmonic generation (SHG) intensity were obtained by using 1064 nm Nd:YAG laser. The SHG intensity remained unchanged up to 95 °C. At room temperature, it remained stable up to 8 days after initial drop of about 14%. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
We report on the determination of the gelation point of semi‐interpenetrating polymer networks (semi‐IPNs) composed of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAAc) formed by a sequential method. The evolution of the viscoelasticity during the gelation reaction of acrylic acid (AAc) in solutions of PVA has been monitored through the sol‐gel transition with dynamic mechanical experiments. The gelation time of the system increased with PVA concentration; however, the molecular structure of the gel, composed of swollen clusters, is rather independent of the presence of PVA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1944–1949, 2005  相似文献   

10.
We report here the synthesis via Suzuki polymerization of two novel alternating polymers containing 9,9‐dioctylfluorene and electron‐withdrawing 4,4′‐dihexyl‐2,2′‐bithiazole moieties, poly[(4,4′‐dihexyl‐2,2′‐bithiazole‐5,5′‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)] (PHBTzF) and poly[(5,5′‐bis(2″‐thienyl)‐4,4′‐dihexyl‐2,2′‐bithiazole‐5″,5″‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)] (PTHBTzTF), and their application to electronic devices. The ultraviolet–visible absorption maxima of films of PHBTzF and PTHBTzTF were 413 and 471 nm, respectively, and the photoluminescence maxima were 513 and 590 nm, respectively. Cyclic voltammetry experiment showed an improvement in the n‐doping stability of the polymers and a reduction of their lowest unoccupied molecular orbital energy levels as a result of bithiazole in the polymers' main chain. The highest occupied molecular orbital energy levels of the polymers were ?5.85 eV for PHBTzF and ?5.53 eV for PTHBTzTF. Conventional polymeric light‐emitting‐diode devices were fabricated in the ITO/PEDOT:PSS/polymer/Ca/Al configuration [where ITO is indium tin oxide and PEDOT:PSS is poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonic acid)] with the two polymers as emitting layers. The PHBTzF device exhibited a maximum luminance of 210 cd/m2 and a turn‐on voltage of 9.4 V, whereas the PTHBTzTF device exhibited a maximum luminance of 1840 cd/m2 and a turn‐on voltage of 5.4 V. In addition, a preliminary organic solar‐cell device with the ITO/PEDOT:PSS/(PTHBTzTF + C60)/Ca/Al configuration (where C60 is fullerene) was also fabricated. Under 100 mW/cm2 of air mass 1.5 white‐light illumination, the device produced an open‐circuit voltage of 0.76 V and a short‐circuit current of 1.70 mA/cm2. The fill factor of the device was 0.40, and the power conversion efficiency was 0.52%. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1845–1857, 2005  相似文献   

11.
Thiol‐ene radical addition by photolysis is a highly efficient click reaction of sufhydryl groups with reactive enes that has been extensively explored as a promising means to construct multifunctional materials. Here, photo‐induced thiol‐ene crosslinked films composed of linear methacrylate copolymer polythiols (MCPsh) are reported. Well‐defined MCPsh copolymers were prepared by thiol‐responsive cleavage of pendant disulfide linkages positioned in the corresponding methacrylate copolymers with narrow molecular weight distribution which were synthesized by a controlled radical polymerization method. With a commercially available multifunctional acrylate as a model ene, photo‐induced thiol‐ene radical polyaddition of these polythiols is competitive to free‐radical homopolymerization of acrylates, yielding crosslinked films exhibiting rapid cure, uniform network, and enhanced mechanical properties; these properties are required for high performance coating materials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2860–2868.  相似文献   

12.
A thermal stable aromatic polyimide (PI) with side‐chain second‐order nonlinear optical (NLO) chromophores has been developed. The PI was prepared by the ring‐opening polyaddition of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride with a new diamine having two N‐ethyl‐N‐[4‐[(6‐chlorobenzothiazol‐2‐yl)diazenyl]phenyl]‐2‐aminoethanol units as the NLO chromophore, followed by poling during or after the thermal imidization process. The resulting PI had number and weight‐average molecular weights (Mn, Mw) of 25,000 and 80,000, respectively, and a relatively high glass transition temperature of 180°C. The second harmonic coefficient (d33) of PI at the wavelength of 1.064 μm was 138 pm/V (329.6 × 10−9 esu) and remained unchanged at elevated temperatures. The corona poling process of the NLO‐substituted poly(amic acid) to the PI was also studied in detail by measuring the second harmonic generation (SHG) from the polymer films. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1321–1329, 1999  相似文献   

13.
Second‐order nonlinear optical copolyimides were prepared from a novel chromophore‐containing diamine, 4‐nitro‐4′‐[N‐(4,6‐di‐4‐aminophenylamino)‐1,3,5‐triazin‐2‐yl]aminoazobenzene, a codiamine, 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane, and benzophenone‐3,3′,4,4′‐tetracarboxylic dianhydride by a traditional two‐step process, which includes a solution polycondensation followed by a chemical imidization. Some of the polyimides (PIs) obtained possessed direct photolithographic features, and good photolithographic patterns were easily obtained. All PIs exhibited high‐glass transition temperatures (235–246 °C) and high thermal‐decomposition temperatures. They were also soluble in strong polar aprotic solvents such as N‐methyl‐2‐pyrrolidone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, and γ‐butyrolactone. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1419–1425, 2001  相似文献   

14.
Nanostructure, glass transition dynamics and elastic properties were studied in the 3D nanodiamond‐containing composites based on polyurethane‐poly(2‐hydroxyethyl methacrylate) semi‐interpenetrating polymer networks (PU‐PHEMA semi‐IPNs), neat PU or PHEMA matrices. Nanodiamond (ND) content in the nanocomposites varied from 0.25 to 3 wt %. Combined differential scanning calorimetry/ laser‐interferometric creep rate spectroscopy/atomic force microscopy approach was utilized. A large impact of small 3D ND additives on PU‐PHEMA networks' dynamics and properties was revealed under conditions when an average inter‐particle distance L exceeds by far gyration radius Rg. The pronounced heterogeneity of glass transitions' dynamics and two opposite effects were observed. The main effect was a strong suppression of PHEMA glass transition dynamics at 90–180 °C, with the enhancement of creep resistance and threefold to sixfold increasing modulus of elasticity. The peculiarly crosslinked structure of nanocomposites, due to double covalent hybridization, resulted in low rheological percolation threshold, and a synergistic effect in dynamics was observed. Less pronounced effect of accelerating dynamics in the temperature region between β‐ and α‐transitions in PHEMA was associated with dynamics in domains with loosened molecular packing. The distinct physical limit for “anomalous” decreasing Tg is predicted in terms of the notion of the common segmental nature of α‐ and β‐relaxations. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1696–1712, 2008  相似文献   

15.
Bismaleimide (BMI) resins with good thermal stability, fire resistance, low water absorption, and good retention of mechanical properties at elevated temperatures, especially in hot/wet environments, have attracted more attention in the electronic and aerospace industries. However, their relatively high dielectric constant limits their application in the aforementioned fields. In this work, a new promising approach is presented that consists of the formation of a self‐catalytic thermoset/thermoset interpenetrating polymer network. Interpenetrating polymer networks (IPNs) based on modified BMI resin (BMI/DBA) and cyanate ester (b10) were synthesized via prepolymerization followed by thermal curing. The self‐catalytic curing mechanism of BMI/DBA‐CE IPN resin systems was examined by differential scanning calorimetry. The dielectric properties of the cured BMI/DBA‐CE IPN resin systems were evaluated by a dielectric analyzer and shown in dielectric properties‐temperature‐log frequency three‐dimensional plots. The effect of temperature and frequency on the dielectric constant of the cured BMI/DBA‐CE IPN resin systems is discussed. The composition effect on the dielectric constant of the cured IPN resin systems was analyzed on the basis of Maxwell's equation and rule of mixture. The obtained BMI/DBA‐CE IPN resin systems have the combined advantages of low dielectric constant and loss, high‐temperature resistance, and good processability, which have many applications in the microelectronic and aerospace industries. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1123–1134, 2003  相似文献   

16.
In this study, donor‐acceptor type thiophene‐perylene‐thiophene monomers were synthesized and polymerized by both oxidative polymerization using FeCl3 as catalyst and the electrochemical process. UV–vis, FTIR, 1H NMR, and elemental analysis techniques were used for structural characterization. Thermal behaviors of these compounds were determined by using TGA system. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels and electrochemical and optical band gap values were calculated by using the results of cyclic voltammetry and UV–vis measurements, respectively. The number–average molecular weight (Mn), weight–average molecular weight (Mw), and polydispersity index (PDI) values of synthesized polymers were determined by size exclusion chromatography. Conductivity measurements of these polymers were carried out by electrometer by using a four‐point probe technique. The conductivity was observed to be increased by iodine doping. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1974–1989, 2008  相似文献   

17.
In this work, semi‐interpenetrating gels of poly(N‐isopropyl acrylamide) and methylcellulose were successfully synthesized by using the Frontal Polymerization (FP) technique. The gels were obtained in the presence of dimethyl sulfoxide and trihexyltetradecylphosphonium persulfate, as polymerization solvent and radical initiator, respectively, hence avoiding the formation of bubbles during polymerization. Then, some of the gels containing dimethyl sulfoxide were thoroughly washed with water, hence obtaining the corresponding hydrogels. The effects of the ratio between poly(N‐isopropyl acrylamide) and methylcellulose, the amount of crosslinker and solvent medium (i.e., dimethyl sulfoxide and water) were thoroughly studied, assessing the influence of temperature and velocity of FP fronts on the glass transition temperature values (dried samples), on the swelling behavior and on the dynamic‐mechanical properties (gels swollen both in water and dimethyl sulfoxide). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 437–443  相似文献   

18.
Amphiphilic core–shell nanostructures containing 19F stable isotopic labels located regioselectively within the core domain were prepared by a combination of atom transfer radical polymerization (ATRP), supramolecular assembly, and condensation‐based crosslinking. Homopolymers and diblock copolymers containing 4‐fluorostyrene and methyl acrylate were prepared by ATRP, hydrolyzed, assembled into micelles, and converted into shell‐crosslinked nanoparticles (SCKs) by covalent stabilization of the acrylic acid residues in the shell. The ATRP‐based polymerizations, producing the homopolymers and diblock copolymers, were initiated by (1‐bromoethyl)benzene in the presence of CuBr metal and employed N,N,N,N,N″‐pentamethyldiethylenetriamine as the coordinating ligand for controlled polymerizations at 75–90 °C for 1–3 h. Number‐average molecular weights ranged from 2000 to 60,000 Da, and molecular weight distributions, generally less than 1.1 and 1.2, were achieved for the homopolymers and diblock copolymers, respectively. Methyl acrylate conversions as high as 70% were possible, without observable chain–chain coupling reactions or molecular weight distribution broadening, when bromoalkyl‐terminated poly(4‐fluorostyrene) was used as the macroinitiator. Poly(4‐fluorostyrene), incorporated as the second segment in the diblock copolymer synthesis, was initiated from a bromoalkyl‐terminated poly(methyl acrylate) macroinitiator. After hydrolysis of the poly(methyl acrylate) block segments, micelles were formed from the resulting amphiphilic block copolymers in aqueous solutions and were then stabilized by covalent intramicellar crosslinking throughout the poly(acrylic acid) shells to yield SCKs. The SCK nanostructures on solid substrates were visualized by atomic force microscopy and transmission electron microscopy. Dynamic light scattering was used to probe the effects of crosslinking on the resulting hydrodynamic diameters of nanoparticles in aqueous and buffered solutions. The presence of fluorine atoms in the diblock copolymers and resulting SCK nanostructures allowed for characterization by 19F NMR in addition to 1H NMR, 13C NMR, and IR spectroscopy. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4152–4166, 2001  相似文献   

19.
A novel poly(N‐isopropylacrylamide) (PNIPA)/PNIPA interpenetrating polymer network (IPN) was synthesized and characterized. In comparison with conventional PNIPA hydrogels, the shrinking rate of the IPN hydrogel increased when gels, swollen at 20 °C, were immersed in 50 °C water. The phase‐transition temperature of the IPN gel remained unchangeable because of the same chemical constituent in the PNIPA gel. The reswelling kinetics were slower than those of the PNIPA hydrogel because of the higher crosslinking density of the IPN hydrogel. The IPN hydrogel had better mechanical strength because of its higher crosslinking density and polymer volume fraction. The release behavior of 5‐fluorouracil (5‐Fu) from the IPN hydrogel showed that, at a lower temperature, the release of 5‐Fu was controlled by the diffusion of water molecules in the gel network. At a higher temperature, 5‐Fu inside the gel could not diffuse into the medium after a burst release caused by the release of the drug on the surface of the gel. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1249–1254, 2004  相似文献   

20.
A novel optically active monomer, 6‐{4‐[4‐(1‐phenyl‐1H‐tetrazol‐5‐yloxy)‐phenylazo] ‐phenoxy}‐hexyl methacrylate (PTPPHMA) bearing tetrazole and azobenzol moieties, was synthesized and polymerized by reversible addition‐fragmentation chain transfer (RAFT) polymerization using 2‐cyanoprop‐2‐yl dithiobenzoate (CPDB) as the RAFT agent and 2, 2′‐azobis(isobutyronitrile) (AIBN) as the initiator. Well‐defined optically active photochromic polyPTPPHMA(PPTPPHMA) was obtained. “Living”/controlled characteristics were observed in the polymerization: well‐controlled molecular weights (Mns), narrow molecular weight distributions (Mw/Mn) of the polymers and successful chain‐extension of PPTPPHMA with styrene (St) as the second monomer. The photochemical interconversion between trans and cis isomers of PPTPPHMA in N,N′‐dimethyl formamide (DMF) solution was explored under irradiation of ultraviolet light. The photoinduced birefringence on the thin films of PPTPPHMA was investigated. A maximum birefringence of 0.1 was obtained, and no significant change of profiles of the birefringence after several cycles of writing/erasing/rewriting sequences was observed. The surface‐relief‐gratings (SRGs) were induced on the polymer films by interference of Kr+ laser beams at 413.1 nm with 35 mW/cm2 intensity, the diffraction efficiencies from SRGs were measured to be in the range of 2.0–2.5%. The atomic force microscopy (AFM) results showed the gratings produced on the surfaces of the polymer film. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 682–691, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号